Spelling suggestions: "subject:"twowheeled mobile robot"" "subject:"towheeler mobile robot""
1 |
Cooperative control of quadrotors and mobile robots: controller design and experimentsMu, Bingxian 20 December 2017 (has links)
Cooperative control of multi-agent systems (MASs) has been intensively investigated in the past decade. The task is always complicated for an individual agent, but can be achieved by collectively operating a group of agents in a reliable, economic and efficient way. Although a lot of efforts are being spent on improving MAS performances, much progress has yet to be developed on different aspects. This thesis aims to solve problems in the consensus control of multiple quadrotors and/or mobile robots considering irregular sampling controls, heterogeneous agent dynamics and the presence of model uncertainties and disturbances.
The thesis proceeds with Chapter 1 by providing the literature review of the state-of-the-art development in the consensus control of MASs. Chapter 2 introduces experimental setups of the laboratory involving two-wheeled mobile robots (2WMRs), quadrotors, positioning systems and inter-vehicle communications. All of the developed theoretical results in Chapters 3-6 are experimentally verified on the platform. Then it is followed by two main parts: Irregular sampling consensus control methods (Chapter 3 and 4) and cooperative control of heterogeneous MASs (Chapter 5 and 6). Chapter 3 focuses on the non-uniform sampling consensus control for a group of 2WMRs, and Chapter 4 studies the event-based rendezvous control for a group of asynchronous robots with time-varying communication delays. Chapter 5 concentrates on cooperative control methods for a heterogeneous MAS consisting of quadrotors and 2WMRs. Chapter 6 focuses on the design of a quadrotor flight controller which is robust to various adverse factors such as model uncertainties and external disturbances. The developed controller is further applied to the consensus control of the heterogeneous MAS.
Specifically, Chapter 3 studies synchronized and non-periodical sampling consensus control methods for a group of 2WMRs. The directed and switching communication topologies among the network are considered in the controller design. The 2WMR is an underactuated system, which implies that it can not generate independent x and y accelerations in the two-dimensional plane. The rendezvous control methods are proposed for 2WMRs. The algebraic graph theory and stochastic matrix analysis are employed to conduct the convergence analysis.
Although the samplings in the work of Chapter 3 are aperiodic, one feature is that local clocks of agents are required to be synchronized. Challenges arise in the practical control of distributed MASs, especially in the scenario that the global clock is lacking. Moreover, frequent samplings can result in redundant information transmissions when the communication bandwidth is limited. To address these problems, Chapter 4 investigates an event-based rendezvous control method for a group of asynchronous MAS with time-varying communication delays. Integral-type triggering conditions for each robot are adopted to be checked periodically. If the triggering condition is satisfied at one checking instant, the agent samples and broadcasts the state to the neighbors with a bounded communication delay. Then an algorithm is provided for driving 2WMRs to asymptotically reach rendezvous. The convergence analysis is conducted through Lyapunov approaches.
Most of the theoretical works on cooperative control are focused on controlling agents with identical dynamics. However, in certain realistic scenarios, some complex missions require the cooperation of different types of agent dynamics such as surveillance, search and rescue, etc. Tasks can be carried out with higher efficiency by employing both the autonomous ground vehicles and unmanned aerial vehicles. To achieve better performance for MASs, in Chapter 5, distributed cooperative control methods for a heterogeneous MAS consisting of quadrotors and 2WMRs are developed. Consensus conditions are provided, and the theoretical results are experimentally verified.
Many existing quadrotor control methods need exact model parameters of the quadrotor. In reality, when a quadrotor is conducting some tasks with extra payloads or with unexpected damages to the model structure, errors in parameters could result in the failure of the flight. External disturbances also inevitably affect the flight performance. To move a step further towards practical applications, in Chapter 6, a robust quadrotor flight controller using Integral Sliding Mode Control (ISMC) technique is investigated. In experiments, an extra payload with the position and mass unknown, is attached to destroy the accuracy of the model and to add disturbances. The designed controller significantly rejects negative effects caused by the payload during the flight. This controller is also successfully applied to an MAS consisting of a quadrotor and 2WMRs. / Graduate
|
2 |
Návrh a konstrukce dvoukolového mobilního robotu / Design and Construction of a Two-Wheel Mobile RobotMeisl, Milan January 2011 (has links)
This diploma thesis deals with a design and construction of a two-wheeled mobile robot. In order to prepare a high-quality project, a testing carriage has been constructed serving as a basis of useful information for the final design and construction. Beside introduction and conclusion, the diploma thesis consists of four main parts. While the first part of the thesis briefly introduces the field of robotics, the theoretical part focuses both on particular components necessary for the robot's construction as well as the Segway vehicle which served as an inspiration for the robot's functionality. After characteristics of a testing carriage, attention is devoted to individual methods of stabilization, with several different types of sensors being used. Furthermore, the chapter on mechanical design examines choice of devices and their position and provides a scheme for their construction. The electrical design follows afterwards, describing circuits that were considered optimal for the designed wiring. The forth part of the diploma thesis concentrates on the construction of a two-wheeled carriage and covers following topics: construction of mechanical components, production of electric boards, programmatic equipment of the carriage and its implementation, testing of the carriage and finally also an evaluation of achieved results.
|
3 |
Modélisation et commande des robots : nouvelles approches basées sur les modèles Takagi-Sugeno / Modeling and control of robots : new approaches based on the Takagi-Sugeno modelsAllouche, Benyamine 15 September 2016 (has links)
Chaque année, plus de 5 millions de personne à travers le monde deviennent hémiplégiques suite à un accident vasculaire cérébral. Ce soudain déficit neurologique conduit bien souvent à une perte partielle ou totale de la station debout et/ou à la perte de la capacité de déambulation. Dans l’optique de proposer de nouvelles solutions d’assistance situées entre le fauteuil roulant et le déambulateur, cette thèse s’inscrit dans le cadre du projet ANR TECSAN VHIPOD « véhicule individuel de transport en station debout auto-équilibrée pour personnes handicapées avec aide à la verticalisation ». Dans ce contexte, ces travaux de recherche apportent des éléments de réponse à deux problématiques fondamentales du projet : l’assistance au passage assis-debout (PAD) des personnes hémiplégiques et le déplacement à l’aide d’un véhicule auto-équilibré à deux roues. Ces problématiques sont abordées du point de vue de la robotique avec comme question centrale : peut-on utiliser l’approche Takagi-Sugeno (TS) pour la synthèse d’une commande ? Dans un premier temps, la problématique de mobilité des personnes handicapées a été traitée sur la base d’une solution de type gyropode. Des lois de commande basées sur les approches TS standard et descripteur ont été proposées afin d’étudier la stabilisation des gyropodes dans des situations particulières telles que le déplacement sur un terrain en pente ou le franchissement de petites marches. Les résultats obtenus ont non seulement permis d’aboutir à un concept potentiellement capable de franchir des obstacles, mais ils ont également permis de souligner la principale difficulté liée à l’applicabilité de l’approche TS en raison du conservatisme des conditions LMIs (inégalités matricielles linéaires). Dans un second temps, un banc d’assistance au PAD à architecture parallèle a été conçu. Ce type de manipulateur constitué de multiples boucles cinématiques présente un modèle dynamique très complexe (habituellement donné sous forme d’équations différentielles ordinaires). L’application de lois de commande basées sur l’approche TS est souvent vouée à l’échec compte tenu du grand nombre de non-linéarités dans le modèle. Afin de remédier à ce problème, une nouvelle approche de modélisation a été proposée. À partir d’un jeu de coordonnées bien particulier, le principe des puissances virtuelles est utilisé pour générer un modèle dynamique sous forme d’équations algébro-différentielles (DAEs). Cette approche permet d’aboutir à un modèle quasi-LPV où les seuls paramètres variants représentent les multiplicateurs de Lagrange issus de la modélisation DAE. Les résultats obtenus ont été validés en simulation sur un robot parallèle à 2 degrés de liberté (ddl) puis sur un robot parallèle à 3 ddl développé pour l’assistance au PAD. / Every year more than 5 million people worldwide become hemiplegic as a direct consequence of stroke. This neurological deficiency, often leads to a partial or a total loss of standing up abilities and /or ambulation skills. In order to propose new supporting solutions lying between the wheelchair and the walker, this thesis comes within the ANR TECSAN project named VHIPOD “self-balanced transporter for disabled persons with sit-to-stand function”. In this context, this research provides some answers for two key issues of the project : the sit-to-stand assistance (STS) of hemiplegic people and their mobility through a two wheeled self-balanced solution. These issues are addressed from a robotic point of view while focusing on a key question : are we able to extend the use of Takagi-Sugeno approach (TS) to the control of complex systems ? Firstly, the issue of mobility of disabled persons was treated on the basis of a self-balanced solution. Control laws based on the standard and descriptor TS approaches have been proposed for the stabilization of gyropod in particular situations such as moving along a slope or crossing small steps. The results have led to the design a two-wheeled transporter which is potentially able to deal with the steps. On the other hand, these results have also highlighted the main challenge related to the use of TS approach such as the conservatisms of the LMIs constraints (Linear Matrix Inequalities). In a second time, a test bench for the STS assistance based on parallel kinematic manipulator (PKM) was designed. This kind of manipulator characterized by several closed kinematic chains often presents a complex dynamical model (given as a set of ordinary differential equations, ODEs). The application of control laws based on the TS approach is often doomed to failure given the large number of non-linear terms in the model. To overcome this problem, a new modeling approach was proposed. From a particular set of coordinates, the principle of virtual power was used to generate a dynamical model based on the differential algebraic equations (DAEs). This approach leads to a quasi-LPV model where the only varying parameters are the Lagrange multipliers derived from the constraint equations of the DAE model. The results were validated on simulation through a 2-DOF (degrees of freedom) parallel robot (Biglide) and a 3-DOF manipulator (Triglide) designed for the STS assistance.
|
Page generated in 0.0515 seconds