• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 22
  • 13
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 77
  • 77
  • 12
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional characterization of 100K protein of bovine adenovirus type 3

2013 December 1900 (has links)
Bovine adenovirus (BAdV)-3, a Mastadenovirus was isolated from the healthy and sick cattle (Darbyshire et al., 1965; Zhu et al., 2011). Like other adenoviruses, BAdV-3 replication is characterized by the temporally regulated expression of genes characterized by early, intermediate and late gene expression. Genus-common, non-structural protein 100K is encoded by late region L6 of BAdV-3. The objective of the present study was to characterize the BAdV-3 100K protein and identify cellular and viral proteins interacting with 100K. Although BAdV-3 100K encoded as 850 amino acid polypeptide (Reddy et al., 1998), rabbit antisera raised against peptides representing N-terminus or C-terminus recognized a protein of 130 kDa at 12-24 hrs post infection, and proteins of 130 kDa, 100 kDa, 95 kDa and 15 kDa at 36-48 hrs post infection. The 100K appeared to be localized to the nucleus and cytoplasm of BAdV-3 infected cells. In contrast, 100K localized predominantly to cytoplasm of transfected cells. However, BAdV-3 infection of cells transfected with 100K-EYFP expressing plasmid detected fluorescent protein in nucleus of the cells suggesting that another viral protein may be required for the nuclear localization of 100K. Using yeast two-hybrid and GST pull-down assays, 100K protein was shown to interact with BAdV-3 33K protein. These results were validated using bimolecular fluorescence complementation (BiFC) assay. Although, 100K protein interacts with 33K protein, co-expression of both proteins in transfected cells did not alter the cytoplasmic localization of 100K. Using GST-pull down assay and BiFC assay, 33K interacting region of 100K was localized to a stretch of 13 amino acids (624-637). Repeated attempts were not successful in rescuing a recombinant BAdV-3 expressing mutant 100K (containing deletion of amino acids 624-637). The interaction of cellular protein(s) with 100K was determined by mass spectrometric analysis of immunoprecipitated 100K. Mass spectrometry of immunoprecipitate obtained by immunoprecipitating 100K protein from BAdV-3 infected cells harvested at 48 hrs post infection identified six proteins including dynein light chain (DYNLT)1. The initial identified interaction of 100K with DYNLT1 was confirmed by the yeast two-hybrid assay, co-immunoprecipitation assay and BiFC assays. Furthermore, DYNLT1 interacting domain of 100K protein of BAdV-3 was found to be located between 499-587 amino acids. Co-expression of BAdV-3 100K-EY fusion protein with myc epitope tagged DYNLT1 protein did not alter the localization of 100K-EY fusion protein. The investigation into the differences in the subcellular localization of the 100K protein in the transfected and infected cells lead to identification of the cleavage by adenoviral protease. Subsequent analysis suggested that BAdV-3 protease cleaves 100K at two identified potential protease cleavage sites (amino acid 740-745 and 781-786) in transfected or BAdV-3 infected cells. Although protease encoded by human adenovirus (HAdV)-5 or porcine adenovirus (PAdV)-3 also cleaved BAdV-3 100K at potential identified protease cleavage sites, no such cleavage of 100K encoded by HAdV-5 or PAdV-3 could be detected in cells expressing virus specific protease. Successful isolation of recombinant BAdV-3 expressing mutant protease (substitution of alanine for glycine in potential protease cleavage site) suggested that cleavage of BAdV-3 100K by viral protease is not essential for viral replication. However, further analysis observed less virus in the supernatant of cells infected with mutant BAdV-3 compared to WT BAdV-3 suggesting a possible role for cleaved C-terminal fagment in lysis of infected cells. Co-expression of BAdV-100K with other late viral proteins suggested that the 100K-EYFP fusion protein localized to the nucleus in cells co-expressing BAdV-3 protease-DsRed fusion protein. Interestingly, only C-terminal cleaved fragment of 100K localizes to the nucleus in BAdV-3 protease expressing cells. Further analysis suggested that C-terminal fragment localizing to the nucleus contains a bipartite nuclear localization signal, which is recognized by importin α3. Our results suggest that the N-terminal part of 100K may be retained in the cytoplasm by interaction with Tctex1 (DYNLT1). Our study provides for the first time a plasmid co-transfection system for the study of the protease cleavage of viral proteins. Moreover, this is the first report of cleavage of any non-structural viral proteins by adenoviral protease in infected cells.
2

Bacterial Aggregation and Biofilm Formation by Uropathogenic Escherichia coli

Yanwen Cheryl-lynn Ong Unknown Date (has links)
Catheter-associated urinary tract infection (CAUTI) is one of the most common nosocomial infections and is caused by a range of different uropathogens, particularly by uropathogenic Escherichia coli (UPEC). Amongst the different virulence factors, biofilm formation and bacterial aggregation, often mediated by cell surface structures such as fimbriae, are common traits among uropathogens that cause CAUTI. In this study, a collection of UPEC isolates were screened for virulence genes and phenotypes associated with urinary tract infections such as biofilm formation and mannose-sensitive haemagglutination. Two strains, E. coli MS2027 (which formed a strong biofilm) and E. coli M184 (which aggregated strongly) were analysed in detail to determine the molecular mechanisms associated with these phenotypes. Transposon mutagenesis of E. coli MS2027 identified type 3 fimbriae as the factor responsible for its strong biofilm growth. Further screening revealed the presence of type 3 fimbriae in uropathogenic Citrobacter freundii, Citrobacter koseri, Klebsiella oxytoca, Klebsiella pneumoniae and other E. coli. Phylogenetic analysis of the type 3 fimbrial (mrkABCD) genes from these strains revealed they clustered into five distinct clades (A-E) ranging from one to twenty-three members. The majority of the sequences grouped in clade A, which was represented by the mrk gene cluster from the genome sequenced K. pneumoniae strain MGH78578. We demonstrated that type 3 fimbriae are functionally expressed by different Gram negative nosocomial pathogens and present evidence to suggest that they contribute significantly to catheter colonisation. The type 3 fimbrial genes from E. coli MS2027 were found to be located on a conjugative plasmid. Sequencing and annotation revealed that this 42,644 bp plasmid, named pMAS2027, contains 58 putative genes. Bioinformatic analysis identified pMAS2027 as an incompatibility X (IncX1) plasmid. Plasmid pMAS2027 contained genes encoding two important virulence factors, type 3 fimbriae and a type IV secretion (T4S) system. The biofilm ability was solely based on the expression of type 3 fimbriae and not the T4S system. The T4S system, however, accounted for the conjugative ability of pMAS2027. Differential tagging with fluorescent reporter genes demonstrated conjugative transfer of pMAS2027 between cells during biofilm growth. Finaly, transposon mutagenesis of E. coli M184 revealed a number of putative genes potentially responsible for bacterial aggregation. Of these, genes involved in the synthesis of the enterobacterial common antigen (ECA) were shown to be associated with an aggregation phenotype.
3

Bacterial Aggregation and Biofilm Formation by Uropathogenic Escherichia coli

Yanwen Cheryl-lynn Ong Unknown Date (has links)
Catheter-associated urinary tract infection (CAUTI) is one of the most common nosocomial infections and is caused by a range of different uropathogens, particularly by uropathogenic Escherichia coli (UPEC). Amongst the different virulence factors, biofilm formation and bacterial aggregation, often mediated by cell surface structures such as fimbriae, are common traits among uropathogens that cause CAUTI. In this study, a collection of UPEC isolates were screened for virulence genes and phenotypes associated with urinary tract infections such as biofilm formation and mannose-sensitive haemagglutination. Two strains, E. coli MS2027 (which formed a strong biofilm) and E. coli M184 (which aggregated strongly) were analysed in detail to determine the molecular mechanisms associated with these phenotypes. Transposon mutagenesis of E. coli MS2027 identified type 3 fimbriae as the factor responsible for its strong biofilm growth. Further screening revealed the presence of type 3 fimbriae in uropathogenic Citrobacter freundii, Citrobacter koseri, Klebsiella oxytoca, Klebsiella pneumoniae and other E. coli. Phylogenetic analysis of the type 3 fimbrial (mrkABCD) genes from these strains revealed they clustered into five distinct clades (A-E) ranging from one to twenty-three members. The majority of the sequences grouped in clade A, which was represented by the mrk gene cluster from the genome sequenced K. pneumoniae strain MGH78578. We demonstrated that type 3 fimbriae are functionally expressed by different Gram negative nosocomial pathogens and present evidence to suggest that they contribute significantly to catheter colonisation. The type 3 fimbrial genes from E. coli MS2027 were found to be located on a conjugative plasmid. Sequencing and annotation revealed that this 42,644 bp plasmid, named pMAS2027, contains 58 putative genes. Bioinformatic analysis identified pMAS2027 as an incompatibility X (IncX1) plasmid. Plasmid pMAS2027 contained genes encoding two important virulence factors, type 3 fimbriae and a type IV secretion (T4S) system. The biofilm ability was solely based on the expression of type 3 fimbriae and not the T4S system. The T4S system, however, accounted for the conjugative ability of pMAS2027. Differential tagging with fluorescent reporter genes demonstrated conjugative transfer of pMAS2027 between cells during biofilm growth. Finaly, transposon mutagenesis of E. coli M184 revealed a number of putative genes potentially responsible for bacterial aggregation. Of these, genes involved in the synthesis of the enterobacterial common antigen (ECA) were shown to be associated with an aggregation phenotype.
4

Bacterial Aggregation and Biofilm Formation by Uropathogenic Escherichia coli

Yanwen Cheryl-lynn Ong Unknown Date (has links)
Catheter-associated urinary tract infection (CAUTI) is one of the most common nosocomial infections and is caused by a range of different uropathogens, particularly by uropathogenic Escherichia coli (UPEC). Amongst the different virulence factors, biofilm formation and bacterial aggregation, often mediated by cell surface structures such as fimbriae, are common traits among uropathogens that cause CAUTI. In this study, a collection of UPEC isolates were screened for virulence genes and phenotypes associated with urinary tract infections such as biofilm formation and mannose-sensitive haemagglutination. Two strains, E. coli MS2027 (which formed a strong biofilm) and E. coli M184 (which aggregated strongly) were analysed in detail to determine the molecular mechanisms associated with these phenotypes. Transposon mutagenesis of E. coli MS2027 identified type 3 fimbriae as the factor responsible for its strong biofilm growth. Further screening revealed the presence of type 3 fimbriae in uropathogenic Citrobacter freundii, Citrobacter koseri, Klebsiella oxytoca, Klebsiella pneumoniae and other E. coli. Phylogenetic analysis of the type 3 fimbrial (mrkABCD) genes from these strains revealed they clustered into five distinct clades (A-E) ranging from one to twenty-three members. The majority of the sequences grouped in clade A, which was represented by the mrk gene cluster from the genome sequenced K. pneumoniae strain MGH78578. We demonstrated that type 3 fimbriae are functionally expressed by different Gram negative nosocomial pathogens and present evidence to suggest that they contribute significantly to catheter colonisation. The type 3 fimbrial genes from E. coli MS2027 were found to be located on a conjugative plasmid. Sequencing and annotation revealed that this 42,644 bp plasmid, named pMAS2027, contains 58 putative genes. Bioinformatic analysis identified pMAS2027 as an incompatibility X (IncX1) plasmid. Plasmid pMAS2027 contained genes encoding two important virulence factors, type 3 fimbriae and a type IV secretion (T4S) system. The biofilm ability was solely based on the expression of type 3 fimbriae and not the T4S system. The T4S system, however, accounted for the conjugative ability of pMAS2027. Differential tagging with fluorescent reporter genes demonstrated conjugative transfer of pMAS2027 between cells during biofilm growth. Finaly, transposon mutagenesis of E. coli M184 revealed a number of putative genes potentially responsible for bacterial aggregation. Of these, genes involved in the synthesis of the enterobacterial common antigen (ECA) were shown to be associated with an aggregation phenotype.
5

Anomalous PCR results to Grapevine leafroll associated closterovirus type 3 in South Africa

Kotze, Aletta Christina 27 June 2008 (has links)
Grapevine leafroll-associated virus type 3 (GLRaV-3) is the major causative agent of grapevine leafroll disease. The disease has a major negative impact on grape production for wineries, and can cause up to 62.8% loss in production. Despite the negative impact of GLRaV-3 on the grapevine industry worldwide, knowledge on the variability of the virus, which is essential for developing effective control measure of the virus in vineyards, is surprisingly scarce. To test this, six primers sets used in a one tube, one step polymerase chain reaction (PCR) protocol, together with ELISA were used to detect GLRaV-3 virus in 135 plant samples collected from a single vineyard. As expected the more sensitive PCR detected more infected samples than ELISA. However, some samples yielded positive results with the ELISA, but negative results using PCR. This might suggest that strain variants exist. Amongst PCR results of the different primer sets, anomalous results occurred, as often a plant will yield an amplicon with one primer set, but not with another primer set. Using the entire set of 7 PCR results per sample, each plant was assigned a PCR ‘fingerprint’. This yielded 24 different fingerprints in the vineyard. Mapping the spatial distribution of given fingerprints supported the possibility that strain variants exist. However, sequencing areas incorporating the primer binding sites showed no nucleotide sequence differences, indicating that the anomalous PCR results were not due to variants, but rather to protocol error. The PCR protocol used initially was adapted to obtain more optimal detection of virus. Different extraction methods and PCR protocols were tested. It was found that using the two step RT-PCR and using a less dilute plant macerate in ELISA extraction buffer (1:5), yielded amplicon of the expected size from all known infected plant samples. The protocol was further optimized with regards the RT step and subsequent PCR. Since the modified protocol did detect all known infected plant samples it can be concluded that in the 135 plant samples tested no significant sequence variation in strains at the primer binding sites occurred and that the anomalous PCR results initially obtained were due to a sub-optimal extraction method. / Dissertation (MSc (Microbiology))--University of Pretoria, 2008. / Microbiology and Plant Pathology / unrestricted
6

Infection and immunoregulation of T lymphocytes by parainfluenza virus type 3

Sieg, Scott F. January 1996 (has links)
No description available.
7

Etude de la susceptibilité des cellules eucaryotes à l'injection de toxines par le système de sécrétion de type 3 de Pseudomonas aeruginosa / Study of the susceptibility of host cells to toxin injection by the type 3 secretion system of Pseudomonas aeruginosa

Verove, Julien 20 December 2011 (has links)
La pathogénicité de P. aeruginosa (P. a) repose sur de nombreux facteurs de virulence dont le système de sécrétion de type III (SST3). Ce complexe multiprotéique est constitué d'une aiguille se terminant par un translocon composé des protéines PopB et PopD. En s'insérant dans les membranes plasmiques, le translocon permet le passage des exotoxines dans le cytoplasme de la cellule cible. L'induction de la synthèse et de la sécrétion des exotoxines est dépendante d'un contact entre P. a et la cellule cible. Dans ce travail, nous avons examiné l'influence de facteurs cellulaires sur l'efficacité de translocation des toxines. L'utilisation d'un système rapporteur fluorescent CCF2/β-lactamase a permis de visualiser l'injection de toxine. En parallèle, l'association des protéines du translocon avec la membrane de la cellule hôte a été évaluée par immunodétection de PopB/D après fractionnement des membranes sur gradient de sucrose. Les cellules promyelocytaires HL-60 et promonocytaires U937 sont résistantes à l'injection de toxine, bien que PopB et PopD soient associées à la membrane. Après différenciation en neutrophiles, or monocytes/macrophages, ces cellules deviennent sensibles à l'injection sans que l'on détecte de variation notable de la quantité de protéines du translocon insérées dans la membrane. Le traitement des cellules HL-60 sensibles avec un agent déplétant le cholestérol, entraine une diminution de l'injection de toxine. De plus, la protéine PopB est retrouvée dans la fraction membranaire, obtenue par purification sur gradient de sucrose, contenant le marqueur des radeaux lipidiques flotilline. Par une approche pharmacologique, nous apportons la preuve que, en plus de la composition de la membrane, des voies de signalisation intracellulaires impliquées dans la polymérisation de l'actine sont essentielles pour la formation d'un pore fonctionnel. / The pathogenesis of Pseudomonas aeruginosa (P.a) implies multiple virulence factors among which the type III secretion system (T3SS). This multiprotein complex is composed of a needle through which four exotoxins are exported. The protein PopB and PopD form an oligomeric structure (translocon) at the end of the needle that inserts into the host cell membrane and translocates the exotoxins into the cytoplasm. Synthesis and toxin secretion is induced on contact with eukaryotic cell. In this work, we examined the influence of host cell elements on exotoxin translocation efficiency. The delivery of T3SS toxins was investigated using a CCF2/β-lactamase fluorescent reporter system In parallel, the association of translocon proteins with host plasma membranes was evaluated by immunodetection of PopB/D following sucrose gradient fractionation of membranes. Promyelocytic HL-60 cells and promonocytic U937 cells were found to be resistant to toxin injection even though PopB/D associated with host cell plasma membranes. Differentiation of these cells to neutrophil- or macrophage-like cells resulted in an injection-sensitive phenotype without any significant change in the level of membrane-inserted translocon proteins. Treatment of sensitive HL-60 cells with a cholesterol-depleting agent, resulted in a diminished injection of toxin. Moreover, the PopB translocator was found in the membrane fraction obtained from sucrose-gradient purifications and containing lipid-raft marker flotillin. Through a pharmacological approach, we brought evidence that, in addition to membrane composition, some general signalling pathways involved in actin polymerization may be critical for the formation of a functional pore.
8

Study of expression and function of SepL, a regulator of type 3 secretion in enterohaemorrhagic Escherichia coli O157

Wang, Dai January 2011 (has links)
Enterohaemorrhagic Escherichia coli (EHEC) are a recently emerged group of pathogens that can cause fatal infections in the young and elderly. EHEC utilize a virulence factor delivery organelle called a ’Type 3 secretion system’ that results in the formation of characteristic ‘pedestal structures’ on epithelial cells allowing colonization in the human or ruminant gastrointestinal tract. To achieve this, effector proteins have to be injected into host cells. The SepL-SepD complex has been shown to be key for controlling T3-related protein secretion in EHEC. Lack of either protein results in effector hypersecretion and strongly impaired secretion of EspADB translocon proteins. Therefore, the expression and function of SepL was the focus of my PhD research. The expression of SepL was shown to be heterogeneous and co-expressed with EspA filaments in EHEC O157 strains. My work revealed two transcriptional regulators (Ler and SepD) and two putative posttranscriptional regulators (Hfq and CsrA) of SepL expression. Further experiments mapped a key mRNA region required for heterogeneous expression of SepL. This sequence forms a predicted hairpin structure around the Shine-Dalgarno (SD) site of sepL. A model has been formed based on my data in which Hfq and CsrABCD bind to the mRNA potentially competing to control translation. Functionally, the C-terminus of SepL was found to be expendable for 1) SepD binding; 2) SepL membrane localization and 3) translocon export, however it was required for 1) limiting effector secretion via (2) a Tir interaction which might be disassociated by (3) an EscD interaction once host cell signals are sensed. Previously, the concept of two different types of T3 secretion signal were demonstrated in Yersinia spp, I tested this hypothesis in EHEC using both wild type and SepL/SepD deficient EHEC strains. SepL/SepD is required for the N-terminal signal pathway but not a chaperone binding domain signal pathway. A 12aa NleA which only contained an N-terminal signal was shown to bind to SepD and so did the multi-functional T3 chaperone ― CesT. Finally, Far-Western assays demonstrated that SepL only interacted with Tir while SepD could bind other effector proteins indicating that SepL/SepD may act as a targeting hub for effector protein secretion.
9

A double blind placebo controlled study of granisetron in antidepressant induced sexual dysfunction

Ording-Jespersen, Sean Melville January 2005 (has links)
A research report submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Medicine in the branch of Psychiatry Melbourne, 2005 / Sexual dysfunction is a common side effect of treatment with antidepressants, particularly those with a serotonergic action. The problem has significant implications for a patient’s quality of life and their compliance with medication. Given the often longterm nature of depressive disorders and their treatment this side effect poses a potential management challenge and may have serious prognostic implications. There are currently few evidence-based treatment strategies for the management of antidepressant induced sexual dysfunction. This study was conducted to evaluate the usefulness of granisetron, a serotonin type-3 receptor antagonist, in the treatment of women experiencing sexual dysfunction due to serotonergic antidepressants. Twelve women with antidepressant induced sexual dysfunction were assigned to receive either granisetron (N=5) or placebo (N=7) in a 14-day randomised, double blind, placebo controlled drug trial. Two subjects in the granisetron group did not complete the study. Each subject’s sexual functioning was assessed at baseline, day 7 and day 14 using both the Arizona Sexual Experience Scale and the Feiger Sexual Function and Satisfaction Questionnaire. No statistical differences were measured either at baseline or at endpoint between the granisetron and placebo groups. The study did not produce evidence supporting the usefulness of granisetron as an adjunctive medication in women with antidepressant induced sexual dysfunction. Furthermore, this finding does not suggest a primary role for the serotonin type-3 receptor in the pathogenesis of this side effect.
10

Caracterização genômica de um vírus dengue tipo 3, isolado de paciente com dengue clássico / Genomic characterization of a dengue type 3 virus isolated from a patient with dengue fever

Gonçalves, Paula Fernanda 22 June 2007 (has links)
Dengue é uma doença infecciosa não contagiosa causada pelo vírus da dengue (gênero Flavivirus, família Flaviviridae), transmitida pela picada de artrópodes do gênero Aedes, principalmente Aedes aegypti, e sendo atualmente um importante problema de saúde pública em todo o mundo. Segundo a Organização Mundial de Saúde, cerca de 50 a 100 milhões de pessoas se infectam anualmente em mais de 100 países de todos os continentes. A dengue apresenta-se em três formas clínicas principais; doença febril indiferenciada, febre clássica do dengue (DF) e dengue hemorrágico com ou sem choque (DHF/DSS). Recentemente, viu-se um dramático aumento do número de casos de DHF/DSS nas Américas, e este aumento coincidiu com a introdução do dengue tipo 3, genótipo III. Neste trabalho, caracterizamos completamente o genoma de um vírus brasileiro de dengue tipo 3 (D3BR/RP1/2003) isolado de um paciente com dengue clássica. O genoma viral possui um tamanho de 10707 nucleotídeos e contém uma única região codificadora (posição 95 a 10264) flanqueada por duas regiões não codificadoras (RNC5, 1 a 94; RNC3, 10268 a 10707). A comparação do genoma viral com outros vírus isolados de pacientes com DF e DHF não mostrou diferenças significativas que sugerissem a presença de um fator genético associado à virulência. A analise filogenética baseada no genoma completo, mostra que a cepa D3BR/RP1/2003 pertence ao genótipo III e encontra-se proximamente relacionada a outro vírus isolado no Rio de Janeiro em 2002. Entretanto, quando essa análise filogenética é realizada com as regiões codificadoras das proteínas E e NS5 individualmente, a cepa D3BR/RP1/2003 encontra-se mais proximamente relacionada a um vírus isolado na Ilha de Martinica no Caribe. Este achado sugere que o isolado D3BR/RP1/2003 pode ter sido originado através de um evento de recombinação entre duas cepas virais distintas antes ou após sua introdução no Brasil. Dados sugestivos de recombinação foram observados também quando analisada a relação filogenética entre vírus isolados na Ásia. / Dengue is an infectious disease caused by dengue virus (genus Flavivirus, family Flaviviridae), transmitted by the bite of arthropods of the Aedes genus, mainly Aedes aegypti, and being currently an important problem of public health worldwide. According to the World Health Organization, about 50 the 100 million people are infected annually in more than 100 countries of all continents. Dengue can be presented in three main clinical forms; undifferentiated febrile illness, classic dengue fever (DF) and hemorrhagic dengue fever with or without shock (DHF/DSS). Recently, a dramatically increase of DHF/DSS cases in the Americas have been seen, and this increase coincided with the introduction of the dengue type 3, genotype III. In this work, we have completely characterized the genome of a Brazilian dengue type 3 (D3BR/RP1/2003 strain) isolated from a DF patient. The viral genome possesses a size of 10707 nucleotides and has a unique open reading frame (position 95 to 10264), flanked by two untranslated regions (UTR5\', 1 to 94; UTR3\', 10268 to 10707). The comparison of the viral genome with other viruses isolated from patients with DF and DHF did not show significant differences to suggest the presence of a genetic factor associate with virulence. Phylogenetic analysis based on the complete genome showed that D3BR/RP1/2003 strain belongs to genotype III and is close related to another virus isolated in Rio de Janeiro in 2002. However, when the phylogenetic analysis was based on the individual coding regions of E and NS5 proteins, D3BR/RP1/2003 strain was closely related to a virus isolated in the Island of Martinique in the Caribbean. This finding suggests that D3BR/RP1/2003 strain could have been originated through an event of recombination between different virus strains before or after its introduction to Brazil. Data supporting recombination events between viruses isolated in Asia have also been observed.

Page generated in 0.0409 seconds