• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 11
  • 11
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 80
  • 80
  • 80
  • 48
  • 24
  • 23
  • 18
  • 17
  • 16
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Needle Tip-Pore Interactions in the Pseudomonas aeruginosa Type III Secretion System Translocon

Kundracik, Emma Caitlin 26 May 2023 (has links)
No description available.
32

Identification of Human Proteins Interacting with the Protein IcsB of Shigella flexneri

Alzahrani, Ashwag 26 October 2018 (has links)
Problem: Shigella is a gram-negative enteropathogen that, when passed through fecal particles from one host to the oral cavity of another host, causes an infectious disease known as shigellosis. One of the distinctive features of the infection by Shigella is its ability to bypass its host’s autophagic defenses. It does this through the use of a Type III secretion system, found in gram-negative pathogens like Shigella, which injects virulent proteins into the host cell. One of these proteins is IcsB; however, its exact function is not well understood. This study aims to better understand the role of this protein in the infection. Methods: A yeast two-hybrid screening test is used in this case to examine the interactions between variations of the protein IcsB, and a library of host proteins. Given IcsB’s high yeast toxicity and that resulted in the total absence of yeast colony formation, the first aim was to identify IcsB variants which expression would not prevent yeast growth. The second aim was to use the mutant with reduced cytotoxicity to perform a Y2H screen that will allow for the identification of candidate host proteins interacting with IcsB. Results: Two mutations of the IcsB protein grew in the Y2HG yeast strain, indicating a significant reduction in the protein’s toxicity. Of the cultures that reacted, high stringency and strong interaction was observed between four genes and IcsB proteins. Among the four identified clones that grew, three corresponded to the gene RNF2, while the last one corresponds to a non-coding sequence. Key control experiments revealed that the interaction of IcsB with RNF2 is likely false-positive. Thus, when screened full-length IcsB using new epithelial cells cDNAVI libraries, strong interaction was observed between three genes and our IcsB proteins. All the three genes DDX3X, FANCL, and SGT1 passed the false-positive interaction tests. It is interesting to notice that DDX3X and SGT1 interacted with catalytically active and inactive IcsB, suggesting that the interactions established between IcsB and prey proteins does not require the catalytic - C306A mutation and that IcsB most likely does not function as a protease against these two proteins. By contrast, FANCL bound catalytically inactive, but not catalytically active IcsB, suggesting it could be a substrate of IcsB. The literature provides some support for the putative role of DDX3X, FANCL, and SGT1 in regulating the vacuole escape of Shigella through IcsB action. Conclusion: The aim of this study was to determine the functional of IcsB in the vacuole escape of Shigella. This study successfully identified three candidates interacting partner proteins for IcsB. Key control experiments confirmed the interaction of IcsB with DDX3X, FANCL and SGT1. This study provides a basis for further research, with further study aimed at confirming these results during Shigella infection
33

ON TRANSLOCATOR PROTEIN EXPORT VIA THE PSEUDOMONAS AERUGINOSA TYPE III SECRETION SYSTEM

Tomalka, Amanda Grace 21 February 2014 (has links)
No description available.
34

Iron- and Temperature-Dependent Regulation of Shigella Dysenteriae Virulence-Associated Factors

Wei, Yahan January 2016 (has links)
No description available.
35

Studies on the Interaction and Organization of Bacterial Proteins on Membranes

Brena, Mariana 02 July 2019 (has links)
Bacteria have developed various means of secreting proteins that can enter the host cell membrane. In this work I focus on two systems: cholesterol-dependent cytolysins and Type III Secretion. Cholesterol is a molecule that is critical for physiological processes and cell membrane function. Not only can improper regulation lead to disease, but also the role cholesterol plays in cell function indicates it is an important molecule to understand. In response to this need, probes have been developed that detect cholesterol molecules in membranes. However, it has been recently shown that there is a need for probes that only respond to cholesterol that is accessible at the membrane surface. Perfringolysin O (PFO) is a toxin secreted by Clostridium perfringens that has been developed into a probe capable of detecting accessible cholesterol. Recently, researchers have been expanding the capabilities of this probe by substituting residues, modifying residues, truncating the probe, or a combination of the three. However, lack of characterization of these new probes has led to controversial results. To understand the role of a conserved Cys residue, here we perform cholesterol binding assays and measure the pore formation activity of a Cys modified PFO derivative. The Type III Secretion (T3S) system is a syringe-like apparatus used by various pathogens to inject effector proteins into target cells. The apparatus spans both the inner and outer bacterial membrane, extending to make contact with the host cell where it forms a pore known as the translocon. In Pseudomonas aeruginosa, the translocon is made up of two proteins, PopB and PopD. While recent advances have been made on the structure of the needle and injectisome, information on the translocon remains sparse. In this work, the P. aeruginosa T3S translocon is analyzed using both in vivo and in vitro methods.
36

STRUCTURAL AND BIOCHEMICAL CHARACTERIZATION OF THE CHLAMYDIA PNEUMONIAE TYPE III SECRETION SYSTEM

Stone, Christopher B. 04 1900 (has links)
<p><em>Chlamydia pneumoniae</em> is a Gram-negative intracellular pathogen that uses type III secretion to invade and survive within eukaryotic cells. The T3SS secretes specific effector proteins during the infection process to facilitate immune evasion and nutrient acquisition. Unfortunately, the genetic intractability and difficult culturing conditions of Chlamydiae has inhibited progress in the chlamydial T3S field. This thesis characterizes fundamental aspects of the <em>C. pneumoniae </em>injectisome such as the ATPase, the inner-membrane export apparatus, and a specific effector protein Cpn0803. Initially, we explored whether <em>C. pneumoniae</em> encodes a functional T3S ATPase and if it associates with other T3S components. We found that CdsN has enzymatic activity consistent with other Gram-negative T3S ATPases, and that CdsN associates with inner-membrane and soluble components such as CdsD, CdsQ, CopN and CdsL. We also found that CdsN has binding surfaces for either structural or putative effector / chaperone T3S proteins. Next, we explored the putative flagellar genes, which were of interest since <em>Chlamydia</em> is a non-motile bacteria that lacks flagellum. We found that the flagellar proteins associate with the T3S apparatus, suggesting that they play a role in T3S during the life-cycle. We extended this observation to show that CdsL, a T3S component, down-regulates both CdsN and FliI enzymatic activity, suggesting that the flagellar proteins are involved in T3S. Furthermore, we characterized Cpn0803 as an exemplary effector, which associates with both CdsN and FliI. We found that Cpn0803 is secreted into host cells upon<em> Chlamydia</em> infection. Cpn0803 was thought to be the T3S needle-tip protein; however, the crystal structure does not support this hypothesis. Presently, the actual role of Cpn0803 in the T3S apparatus remains unknown. Overall, our data suggests that CdsN and FliI both function during the chlamydial life-cycle in the T3S process, possibly coordinating effector proteins (such as Cpn0803) for secretion into host cells.</p> / Doctor of Philosophy (PhD)
37

Structural study of ExsA, the regulator of Type III Secretion System of Pseudomonas aeruginosa

Xiao, Yi 06 June 2013 (has links)
The Type III secretion system (T3SS) of Pseudomonas aeruginosa uses a needle-like protein apparatus to detect eukaryotic host cells and translocate effectors directly into the host cell. The effectors are also known as cytotoxins, which cause disruption of a series of signaling events in the host cell, facilitating the infection by P. aeruginosa. As the T3SS is antigenic and the expression of T3SS is energy-consuming, it is highly regulated where several regulatory proteins interact with each other and control the expression of T3SS genes. Among these proteins, ExsA, the master regulator of T3SS in P. aeruginosa, is of great importance as it is a transcriptional activator that activates the expression of all T3SS genes. Also, as ExsA belongs to the AraC protein family which only exists in bacteria and fungi, it makes an excellent potential target for drugs against P. aeruginosa related infections. With a combination of molecular biology tools and structural biology methods, we solved the N-terminal domain structure of the ExsA protein in P. aeruginosa. The model of the ExsA N-terminal domain has enriched our knowledge about ExsA dimerization and can serve as the base for mapping the interaction interfaces on ExsA and ExsD. Further, we have found two homologues of ExsA by structural alignment, which share a lot of similarities and have conserved amino acid residues that are important for ligand binding. The fact that both of these two proteins are regulated by small ligands rather than proteins also raises the possibility that ExsA may have a second regulatory mechanism under which ExsA is regulated by a small ligand, which so far has not been observed or reported by researchers. In order to map the binding site of ExsA on its anti-activator ExsD, we removed the coiled-coil region (amino acid residue 138-202, the potential binding site) of ExsD, based on the  structure of ExsD. We surprisingly found that the ExsD variant without the coiled-coil region readily inhibits ExsA-dependent in vitro transcription. This result rules out other possibilities and makes us focus on the N-terminus and adjacent regions of ExsD for the interface with ExsA. Moreover, in order to gain a comprehensive understanding of the dynamics of the regulation of T3SS in P. aeruginosa, we have begun to build a mathematical model of the T3SS regulatory pathways. We are measuring the cellular concentrations of T3SS regulatory proteins with quantitative molecular biology methods such as quantitative western blot, quantitative PCR and quantitative mass spectrometry. We have determined the cellular level of ExsA and ExsD proteins under different physiological conditions, and found that some factors such as temperature have a significant impact on the levels of ExsA and ExsD. This study has thus unveiled some unknown features of the T3SS of P. aeruginosa and its related infections. / Master of Science
38

Role of Bacterial Effectors SopD and SopB in Pathogenicity of Salmonella enterica serovar Typhimurium.

Bakowski, Malina A. 03 March 2010 (has links)
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that has evolved to take advantage of the eukaryotic host cells it inhabits during infection. It uses bacterial effectors translocated into the host cell cytosol to manipulate host cell machinery and establish a replicative niche. In this thesis I study the function of two of these effectors, SopD and SopB, which have been shown to act cooperatively to induce phenotypes associated with gastroenteritis (fluid secretion and neutrophil influx into the intestinal lumen). In addition to promoting gastroenteritis, SopD has also been implicated in systemic and persistent infection of mice. Although recently implicated in invasion, the precise function of SopD has remained elusive. Here I show that SopD affects membrane dynamics during S. Typhimurium invasion of epithelial cells. SopD promotes membrane sealing and macropinosome formation, events that may have important consequences for efficiency of bacterial cell entry in vivo. Furthermore, we demonstrate that SopD is recruited to the invasion site membranes through the phosphatase activity of SopB, suggesting a mechanism for their cooperative action during induction of gastroenteritis. Unlike SopD, SopB has been a focus of intense research efforts and its role in invasion as a phosphoinositide phosphatase is well documented. However, we have observed that SopB also inhibits fusion of lysosomes with Salmonella-containing vacuoles (SCVs) following invasion. This ability depends on SopB-mediated reduction of negative membrane charge of the SCV during invasion by hydrolysis of the phosphoinositide PI(4,5)P2. Membrane charge alterations driven by SopB result in removal of Rab GTPases from the SCV that depend on electrostatic interactions for their targeting. Two of these Rabs, Rab23 and Rab35 were previously shown to promote phagosome-lysosome fusion. Therefore their removal from the SCV may promote SCV trafficking away from the degradative endocytic pathway of host cells. This represents a new mechanism by which an invasion associated effector controls SCV maturation. Together, this work advances our knowledge of the interaction between S. Typhimurium and its host. This research also suggests a new mechanism by which pathogens other than S. Typhimurium could promote their intracellular survival.
39

Biofilm and Virulence Regulation in the Cystic Fibrosis-Associated Pathogens, Stenotrophomonas maltophilia and Pseudomonas aeruginosa

Layla Ramos-Hegazy (8771495) 30 April 2020 (has links)
Cystic fibrosis (CF) is a fatal, incurable genetic disease that affects over 30,000 people in the United States alone. People with this disease have a homozygous mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) which causes defects in chloride transport and leads to build up of mucus in the lungs and disruption of function in various organs. CF patients often suffer from chronic bacterial infections within the lungs, wherein the bacteria persist as a biofilm, leading to poor prognosis. Two of these pathogens, <i>Stenotrophomonas maltophilia</i> and <i>Pseudomonas aeruginosa</i>, are often found in the lungs of patients with CF and are an increasing medical concerns due to their intrinsic antimicrobial resistance. Both species can readily form biofilms on biotic and abiotic surfaces such as intravascular devices, glass, plastic, and host tissue. Biofilm formation starts with bacterial attachment to a surface and/or adjacent cells, initiating the acute infection stage. Chronic, long-term infection involves subsequent or concurrent altered genetic regulation, including a downregulation of virulence factors, resulting in the bacteria committing to a sessile lifestyle, markedly different from the planktonic one. Many of these genetic switches from an acute to chronic lifestyle are due to pressures from the host immune system and lead to permanently mutated strains, most likely an adaptive strategy to evade host immune responses. Biofilms are extremely problematic in a clinical setting because they lead to nosocomial infections and persist inside the host causing long-term chronic infections due to their heightened tolerance to almost all antibiotics. Understanding the genetic networks governing biofilm initiation and maintenance would greatly reduce consequences for CF and other biofilm-related infections and could lead to the development of treatments and cures for affected patients. This study showed that in<i> S. maltophilia</i>, isogenic deletion of phosphoglycerate mutase (<i>gpmA</i>) and two chaperone-usher pilin subunits, <i>S. maltophilia</i> fimbrae-1 (<i>smf-1</i>) and<i> cblA</i>, lead to defects in attachment on abiotic surfaces and cystic fibrosis derived bronchial epithelial cells (CFBE). Furthermore, Δ<i>smf-1</i> and Δ<i>cblA</i> showed defects in long-term biofilm formation, mimicking that of a chronic infection lifestyle, on abiotic surfaces and CFBE as well as stimulating less of an immune response through TNF-α production. This study also showed that in <i>P. aeruginosa</i>, the Type III secretion system (T3SS), an important virulence factor activated during the acute stage of infection, is downregulated when <i>polB</i>, a stress-induced alternate DNA polymerase, is overexpressed. This downregulation is due to post-transcriptional inhibition of the master regulatory protein, ExsA. Taken together, this project highlights important genes involved in the acute and chronic infection lifestyle and biofilm formation in <i>S. maltophilia</i> and genetic switches during the acute infection lifestyle in <i>P. aeruginosa</i>.
40

O papel de transferência horizontal de genes na história evolutiva de duas classes de genes em bactérias / The role of horizontal gene transfer in the evolutionary history of two bacterial gene classes

Rangel, Luiz Thibério Lira Diniz 10 August 2017 (has links)
A Transferência Horizontal de Genes (THG) é um dos principais mecanismos de evolução bacterianos, impactando a evolução de praticamente todas famílias gênicas. Neste trabalho identificamos e avaliamos padrões de possíveis transferências horizontais de genes pertencentes a duas classes funcionais de dois níveis taxonômicos distintos. Caracterizamos a ocorrência e evolução de 45 genes importantes para a fixação de N2 em 479 genomas de Proteobacteria. Identificamos cinco potenciais aquisições de genes ligados a fixação de N2 por linhagens de Proteobacteria, as quais foram identificadas consistentemente em 36 dos genes analisados. Realizamos predições de transferências horizontais dos 45 entre todos os 479 genomas de Proteobacteria e identificamos possíveis enriquecimentos de THG, provavelmente ligados à sinais filogenéticos e ecológicos. Desenvolvemos um pipeline para identificação semi-automática de efetores do Sistema Secretor do Tipo III em Aeromonas, o qual reportou 21 famílias de potenciais efetores presentes em 105 genomas. Entre os 21 efetores identificados 17 foram descritos pela 1º vez em Aeromonas, corroborando a sensibilidade de nosso pipeline. Com o auxílio de nossos colaboradores foram realizados testes de citotoxidade para efetores identificados in silico, e apenas quatro não inibiram o crescimento de Saccharomyces cerevisiae. Por fim, desenvolvemos um método para agrupamento de famílias gênicas com histórias evolutivas similares que não requer a reconstrução de árvores filogenéticas, aumentando a eficiência computacional. Aplicamos o método desenvolvido para reconstrução da filogenia de Aeromonas, o qual mostrou-se compatível com dados presentes na literatura. / Horizontal Gene Transfer (HGT) is one of main mechanisms of bacterial evolution, affecting virtually all gene families. In this document we identified and assessed putative horizontal transfers of genes from two functional classes from two distinct taxonomic levels. We characterized the distribution and evolution of 45 genes important to N2 fixation among 479 Proteobacteria genomes. We identified five potential distinct acquisitions of such genes by Proteobacteria lineages. The distinct origins are consistently identified in 36 out of the 45 assessed genes. We computed possible horizontal transfers of the 45 genes among the 479 Proteobacteria genomes, and we identified enrichments of HGT, likely related to phylogenetic and ecological signals. We developed a semi-automated pipeline to identify effectors of the Type III Secretion System within Aeromonas, which reported 21 putative effector families distributed among 105 genomes. Among the 21 likely effectors 17 have been described in Aeromonas for the first time, highlighting the sensibility of our pipeline. Our colaborators performed cytotoxicity tests for the 21 likely effector families identified by in silico analysis, and only four did not inhibited Saccharomyces cerevisiae growth. Lastly, we developed a method to cluster gene families according to shared evolutionary history, without the requirement of phylogenetic tree reconstruction, increasing computational efficiency. We applied this proposed method during Aeromonas phylogenetic reconstruction, and it showed up compatible with data available on the literature.

Page generated in 0.1002 seconds