• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Early detection of high volatility clusters using particle filters

Mundnich Batic, Karel Bogomir January 2013 (has links)
Ingeniero Civil Electricista / El presente trabajo explora y analiza el uso de herramientas de procesamiento de señales que son comunes en áreas de Ingeniería Eléctrica y Pronóstico y Gestión de Salud en el análisis de series de tiempo financieras. El objetivo principal de este trabajo es detectar eventos de alto riesgo en una etapa temprana. De esta forma, el algoritmo propuesto emplea la fuerte relación entre volatilidad y riesgo y detecta clusters de alta volatilidad mediante el uso de la información obtenida de los procesos de estimación a través de Filtro de Partículas. Para alcanzar el objetivo mencionado, se utiliza la representación de espacio-estado estocástica uGARCH para modelar la volatilidad de retornos compuestos continuamente. Dada la no-observabilidad de la volatilidad, se implementan dos esquemas de Filtro de Partículas para su estimación: los enfoques clásico y sensible al riesgo. Este último incluye el uso de una Distribución de Pareto Generalizada como propuesta para el funcional de riesgo (y distribución de importancia) para asegurar la asignación de partículas en regiones del espacio-estado que están asociadas a variaciones rápidas de volatilidad del sistema. Para evaluar correctamente el rendimiento de las rutinas de filtrado, se han generado seis conjuntos de datos, donde ambos el estado y las mediciones son conocidas. Además, se ha realizado un análisis de sensibilidad sobre los seis conjuntos de datos, para así obtener los parámetros que permiten la mejor estimación de volatilidad. De estos resultados, se calculan valores promedios de parámetros que son luego utilizados en el esquema de detección. La etapa de detección explora tres diferentes técnicas. Primero, se propone la utilización de un test de hipótesis entre las estimaciones a priori y a posteriori de las distribuciones de probabilidad del Filtro de Partículas Sensible al Riesgo. Segundo, se utiliza el Discriminante de Fisher para comparar las estimaciones a posteriori de las densidades entre el Filtro de Partículas Clásico y el Sensible al Riesgo. Finalmente, se utiliza la Divergencia de Kullback-Leibler de la misma forma que el Discriminante de Fisher. Los algoritmos propuestos son probados en los datos generados artificialmente y en datos de acciones de IBM. Los resultados demuestran que el Filtro de Partículas Sensible al Riesgo propuesto supera la precisión del Filtro de Partículas en momentos de alzas no esperadas de volatilidad. Por otra parte, el test de hipótesis empleado en el proceso de filtrado sensible al riesgo detecta correctamente la mayoría de las alzas repentinas de volatilidad que conducen a la detección temprana de clusters de alta volatilidad. Finalmente, los algoritmos de detección propuestos basados en Discriminante de Fisher y Divergencia de Kullback-Leibler llevan a resultados donde la detección no es posible.
2

Predicción de cambios en volatilidad de retornos financieros basados en filtros de partículas sensibles al riesgo

Sepúlveda Arancibia, Jorge Eduardo January 2013 (has links)
Ingeniero Civil Electricista / En el presente informe se da cuenta del proceso de diseño e implementación de una metodología para la predicción de niveles de volatilidad de retornos financieros basada en modelos de volatilidad estocástica, sensibles al riesgo, y con entrada exógena. Dicha metodología se basa en modelos generalizados de heterocedasticidad condicional autoregresiva (GARCH por sus siglas en inglés), los que consideran que los retornos de activos financieros pueden ser explicados por información pasada, complementada con un proceso de innovación. En particular se utilizará el denominado modelo \emph{unobserved} GARCH (uGARCH), el que considera que es un proceso de innovación no observado que maneja la evolución de volatilidad en función del tiempo, implementado mediante un enfoque de filtrado Bayesiano sensible al riesgo que logra identificar periodos de alta volatilidad y relacionar dichos periodos con fenómenos que se observan posteriormente en indicadores de otros husos horarios. Para validar el modelo propuesto con datos reales se buscan indicadores de mercados que sean de relación cercana, pero que contengan una diferencia horaria significativa; como es el caso de los mercados asiático y latinoamericano, ya que tienen la mayor diferencia horaria posible y los principales países componentes mantienen una estrecha relación comercial. En efecto entre otras características, China es el mayor socio comercial para la venta de hierro Brasileño, por lo que información fundamental de sus variables macroeconómicas impactan en la valoración de ambos mercados. Finalmente el resultado de la implementación indica que para periodos de aumento de volatilidad en mercados emergentes latinoamericanos (representados con el índice MSCI LA), la predicción con filtro de partículas sensible al riesgo con entrada exógena dependiente del índice asiatico (MSCI ASIAXJ), es superior a la predicción del filtro de partículas clásico bajo los valores calculados de los indicadores propuestos, que además se evidencia gráficamente. En efecto, el valor del índice de predicción calculado en la muestra completa, es 50\% más favorable para el método propuesto, que el filtro de partículas clásico, diferencia que se hace aún más significativa cuando el efecto de la entrada exógena es relevante, llegando a ser 16 veces superior en ese caso.

Page generated in 0.0359 seconds