• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrapdeep water blowouts: COMASim dynamic kill simulator validation and best practices recommendations

Noynaert, Samuel F. 17 February 2005 (has links)
The petroleum industry is in a constant state of change. Few industries have advanced as far technologically as the petroleum industry has in its relatively brief existence. The produced products in the oil and gas industry are finite. As such, the easier to find and produce hydrocarbons are exploited first. This forces the industry to enter new areas and environments to continue supplying the world's hydrocarbons. Many of these new frontiers are in what is considered ultradeep waters, 5000 feet or more of water. While all areas of the oil and gas industry have advanced their ultradeep water technology, one area has had to remain at the forefront: drilling. Unfortunately, while drilling as a whole may be advancing to keep up with these environments, some segments lag behind. Blowout control is one of these areas developed as an afterthought. This lax attitude towards blowouts does not mean they are not a major concern. A blowout can mean injury or loss of life for rig personnel, as well as large economic losses, environmental damage and damage to the oil or gas reservoir itself. Obviously, up-to-date technology and techniques for the prevention and control of ultradeep water blowouts would be an invaluable part of any oil and gas company's exploration planning and technology suite. To further the development of blowout prevention and control, COMASim Cherokee Offshore, MMS, Texas A&M Simulator) was developed. COMASim simulates the planning and execution of a dynamic kill delivered to a blowout. Through a series of over 800 simulation runs, we were able to find several key trends in both the initial conditions as well as the kill requirements. The final phase of this study included a brief review of current industry deepwater well control best practices and how the COMASim results fit in with them. Overall, this study resulted in a better understanding of ultradeep water blowouts and what takes to control them dynamically. In addition to this understanding of blowouts, COMASim's strengths and weaknesses have now been exposed in order to further develop this simulator for industry use.
2

Ultrapdeep water blowouts: COMASim dynamic kill simulator validation and best practices recommendations

Noynaert, Samuel F. 17 February 2005 (has links)
The petroleum industry is in a constant state of change. Few industries have advanced as far technologically as the petroleum industry has in its relatively brief existence. The produced products in the oil and gas industry are finite. As such, the easier to find and produce hydrocarbons are exploited first. This forces the industry to enter new areas and environments to continue supplying the world's hydrocarbons. Many of these new frontiers are in what is considered ultradeep waters, 5000 feet or more of water. While all areas of the oil and gas industry have advanced their ultradeep water technology, one area has had to remain at the forefront: drilling. Unfortunately, while drilling as a whole may be advancing to keep up with these environments, some segments lag behind. Blowout control is one of these areas developed as an afterthought. This lax attitude towards blowouts does not mean they are not a major concern. A blowout can mean injury or loss of life for rig personnel, as well as large economic losses, environmental damage and damage to the oil or gas reservoir itself. Obviously, up-to-date technology and techniques for the prevention and control of ultradeep water blowouts would be an invaluable part of any oil and gas company's exploration planning and technology suite. To further the development of blowout prevention and control, COMASim Cherokee Offshore, MMS, Texas A&M Simulator) was developed. COMASim simulates the planning and execution of a dynamic kill delivered to a blowout. Through a series of over 800 simulation runs, we were able to find several key trends in both the initial conditions as well as the kill requirements. The final phase of this study included a brief review of current industry deepwater well control best practices and how the COMASim results fit in with them. Overall, this study resulted in a better understanding of ultradeep water blowouts and what takes to control them dynamically. In addition to this understanding of blowouts, COMASim's strengths and weaknesses have now been exposed in order to further develop this simulator for industry use.
3

Development of directional capabilities to an ultradeep water dynamic kill simulator and simulations runs

Meier, Hector Ulysses 01 November 2005 (has links)
The world is dependent on the production of oil and gas, and every day the demand increases. Technologies have to keep up with the demand of this resource to keep the world running. Since hydrocarbons are finite and will eventually run out, the increasing demand of oil and gas is the impetus to search for oil in more difficult and challenging areas. One challenging area is offshore in ultradeep water, with water depths greater than 5000 ft. This is the new arena for drilling technology. Unfortunately with greater challenges there are greater risks of losing control and blowing out a well. A dynamic kill simulator was developed in late 2004 to model initial conditions of a blowout in ultradeep water and to calculate the minimum kill rate required to kill a blowing well using the dynamic kill method. The simulator was simple and efficient, but had limitations; only vertical wells could be simulated. To keep up with technology, modifications were made to the simulator to model directional wells. COMASim (Cherokee, Offshore Technology Research Center, Minerals Management Service, Texas A&M Simulator) is the name of the dynamic kill simulator. The new version, COMASim1.0, has the ability to model almost any type of wellbore geometry when provided the measured and vertical depths of the well. Eighteen models with varying wellbore geometry were simulated to examine the effects of wellbore geometry on the minimum kill rate requirement. The main observation was that lower kill rate requirement was needed in wells with larger measured depth. COMASim 1.0 cannot determine whether the inputs provided by the user are practical; COMASim 1.0 can only determine if the inputs are incorrect, inconsistent or cannot be computed. If unreasonable drilling scenarios are input, unreasonable outputs will result. COMASim1.0 adds greater functionality to the previous version while maintaining the original framework and simplicity of calculations and usage.

Page generated in 0.0577 seconds