• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low Temperature Drying of Ultrafine Coal

Freeland, Chad Lee 18 January 2012 (has links)
A new dewatering technology, called low temperature drying, has been developed to remove water from ultrafine (minus 325 mesh) coal particles. The process subjects partially dewatered solids to intense mechanical shearing in the presence of unsaturated air. Theoretical analysis of the thermodynamic properties of water indicates residual surface moisture should spontaneously evaporate under these conditions. This is contingent on the large surface area of these fine particles being adequately exposed to an unsaturated stream of air. To demonstrate this process, three dispersion methods were selected for bench-scale testing; the static breaker, air jet conveyor, and centrifugal fan. Each of these devices was chosen for its ability to fully disperse and pneumatically convey the feed cake. The moisture content of the feed cake, and the temperature and relative humidity of the process air were the key parameters that most significantly affected dryer performance. Of the three methods tested, the centrifugal fan produced the best results. The fan was capable of handling feeds as wet as 21.5% and consistently dried the coal fines below 2% moisture. The cost of the air and heat required to provide good drying performance was modeled to explore the practicality of the drying process. Modeling was accomplished by modifying equations developed for thermal dryers. The modeling results indicate, if good exposure of the fine particle surface area is achieved, dryers operating with either heated or unheated (ambient) air can be used for drying ultrafine coal. / Master of Science
2

Advancement of the Hydrophobic-Hydrophilic Separation Process

Jones, Alan Wayne III 19 April 2019 (has links)
Froth flotation has long been regarded as the best available technology for ultrafine particles separation. However, froth flotation has extreme deficiencies for recovering ultrafine particles that are less than 30-50 μm in size for coal and 10-20 μm for minerals. Furthermore, dewatering of flotation products is difficult and costly using currently available technologies. Due to these problems, coal and mineral fines are either lost to tailings streams inadvertently or discarded purposely prior to flotation. In light of this, researchers at Virginia Tech have developed a process called hydrophobic-hydrophilic separation (HHS), which is based originally on a concept known as dewatering by displacement (DbD). The process uses non-polar solvents (usually short-chain alkanes) to selectively displace water from particle surfaces and to agglomerate fine coal particles. The resulting agglomerates are subsequently broken (or destabilized) mechanically in the next stage of the process, whereby hydrophobic particles are dispersed in the oil phase and water droplets entrapped within the agglomerates coalesce and exit by gravity along with the hydrophilic particles dispersed in them. In the present work, further laboratory-scale tests have been conducted on various coal samples with the objective of commercial deployment of the HHS process. Test work has also been conducted to explore the possibility of using this process for the recovery of ultrafine minerals such as copper and rare earth minerals. Ultrafine streams produced less than 10% ash and moisture consistently, while coarse coal feed had no observable degradation to the HHS process. Middling coal samples were upgraded to high-value coal products when micronized by grinding. All coal samples performed better with the HHS process than with flotation in terms of separation efficiency. High-grade rare earth mineral concentrates were produced with the HHS process ranging from 600-2100 ppm of total rare earth elements, depending on the method and reagent. Additionally, the HHS process produced copper concentrates assaying greater than 30% Cu for both artificial and real feed samples, as well as, between 10-20% Cu for waste samples, which all performed better than flotation. / Master of Science / Froth flotation has long been regarded as the best available technology for separating fine particles. Due to limitations in particle size with froth flotation, and high downstream dewatering costs, a new process has been developed called the hydrophobic-hydrophilic separation (HHS) process. This process was originally based on a concept known as dewatering by displacement (DbD) which was developed by researchers at Virginia Tech in 1995. The process uses hydrocarbon oils, like pentane or heptane, to selectively collect hydrophobic particles, such as coal, for which it was originally developed. In coal preparation plants, a common practice is to purposefully discard the ultrafine stream that flotation cannot recover and has an increased dewatering cost. The HHS process can effectively recovery this waste stream and produce highgrade salable product, with significantly reduced cost of dewatering. In the work presented, laboratory-scale tests have been conducted on various coal samples with the objective of commercial deployment of the HHS process. In this respect, several varying plant streams have been tested apart from the traditional discard stream. Additionally, test work has expanded into mineral commodities such as copper and rare earth minerals. In this work, salable high-value coal products were achievable with the HHS process. Ultrafine streams consistently produced less than 10% ash and moisture. Coarse coal feeds had no observable degradation to the HHS process and were able to produce single digit ash and moisture values. Middling coal samples were upgraded to high-value coal products when micronized by grinding. All coal samples performed better with the HHS process than with flotation in terms of separation efficiency. High-grade rare earth mineral concentrates were produced with the HHS process ranging from 600- 2100 ppm of total rare earth elements depending on the method and reagent. Additionally, the HHS process produced copper concentrates assaying greater than 30% Cu for an artificial and feed samples, as well as, between 10-20% Cu for waste samples, which all performed better than flotation.
3

Methods of Improving Oil Agglomeration

Smith, Sarah Ann 05 June 2012 (has links)
A simple thermodynamic analysis suggests that oil can spontaneously displace water from coal's surface if the coal particle has a water contact angle greater than 90°. However, the clean coal products obtained from laboratory-scale dewatering-by-displacement (DbD) test work assayed moistures substantially higher than expected. These high moisture contents were attributed to the formation of water-in-oil emulsions stabilized by coal particles. Four different approaches were taken to overcome this problem and obtain low-moisture agglomeration products. These included separating the water droplets by screening, breaking emulsions with ultrasonic energy, breaking agglomerates with ultrasonic energy, and breaking agglomerates using vibrating mesh plates. On the basis of the laboratory test work, a semi-continuous test circuit was built and tested using an ultrasonic vibrator to break the water-in-oil emulsions. The most promising results were obtained agglomerates were broken using the ultrasonic probe and the vibrating mesh plates. Tests conducted on flotation feed from the Kingston coal preparation plant gave a clean coal product containing 1% by weigh of moisture with a 94% combustible recovery. The separation efficiency of 93% is substantially higher than results achievable using froth flotation. When agglomerates formed from thermal coal from the Bailey coal preparation plant were broken using either ultrasonic energy or vibrating mesh plates, the obtained results were very similar: clean coal products assayed less than 5% moisture with separation efficiencies of 86% in average. / Master of Science

Page generated in 0.0474 seconds