• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudando plasmas não-Abelianos fortemente acoplados usando a dualidade gauge/gravity / Understanding strongly coupled non-Abelian plasmas using the gauge/gravity duality

Finazzo, Stefano Ivo 02 March 2015 (has links)
O estudo de teorias de calibre não-Abelianas fortemente acopladas, em especial de aspectos térmicos e fora do equilíbrio, é um problema central para a compreensão da Cromodinâmica Quântica (Quantum Chromodynamics - QCD) - em particular, para entender a evolução do Plasma de Quarks e Glúons (Quark-Gluon Plasma- QGP). A técnica mais promissora, QCD na rede, obteve sucesso ao tratar de fenômenos no vácuo e em equilíbrio térmico, como espectros e termodinâmica, mas enfrenta desafios consideráveis ao lidar com fenômenos fora do equilíbrio. Uma ferramenta adaptada para lidar com problemas envolvendo plasmas fortemente acoplados em tempo real é a dualidade gauge/gravity, que mapeia uma Teoria Quântica de Campos (Quantum Field Theory - QFT) fortemente acoplada em d dimensões em uma teoria de gravitação em d + 1 dimensões, a qual, de modo geral, é mais fácil de ser resolvida. Nesta tese, estudamos diversas aplicações da dualidade gauge/gravity em teorias não-Abelianas fortemente acopladas que modelam qualitativamente o QGP. Nós estudamos o cálculo holográfico do potencial entre um par quark-antiquark pesado (QQ) para dipolos QQ estáticos e se movendo com relação ao plasma, apresentando um formalismo geral para o cálculo da parte real e imaginária para uma grande classe de teorias gravitacionais duais. Um estudo da massa de Debye holográfica, baseado no maior comprimento de correlação de operadores ímpares por transformações de CT, foi empreendido, com aplicações em modelos bottom-up que reproduzem a termodinâmica da teoria de Yang-Mills SU(Nc) pura e da QCD. Para estes modelos, também calculamos vários coeficientes de transporte associados com o transporte de cargas no plasma, como a condutitividade elétrica, a constante de difusão de carga e coeficientes de transporte associados a uma teoria de hidrodinâmica relativística de segunda ordem. / The study of strongly coupled non-Abelian gauge theories, especially concerning their thermal and non-equilibrium aspects, is a central problem for understanding Quantum Chromodynamics (QCD) - in particular, to understand the evolution of the Quark-Gluon Plasma (QGP). The most successful approach, lattice QCD, succeeds in dealing with vacuum and equilibrium phenomena, such as spectra and thermodynamics, but faces a considerable challenge when it comes to with non-equilibrium phenomena. A tool adapted to deal with real time problems in strongly coupled plasmas is the gauge/gravity, which maps a strongly coupled d dimensional Quantum Field Theory (QFT) to a d + 1 dimensional theory of gravity, which, in general, is easier to solve. In this thesis, we study several applications of the gauge/gravity duality to strongly coupled non-Abelian theories which model qualitatively the QGP. We deal with the holographic evaluation of the heavy quark-antiquark (Q Q) potential for static and moving QQ dipoles, presenting a general formalism for the computation of the real and imaginary parts for a large class of dual theories of gravity. A study of the holographic Debye mass, based on the largest screening length of CT-odd operators, is pursued, with applications on bottom-up holographic models that reproduce the thermodynamics of pure SU(Nc) Yang-Mills theory and QCD. For these models, we also compute several transport coefficients associated with charge transport in the plasma, such as the electric conductivity, the charge diffusion constant, and transport coefficients associated with a theory of second order relativistic hydrodynamics.
2

Estudando plasmas não-Abelianos fortemente acoplados usando a dualidade gauge/gravity / Understanding strongly coupled non-Abelian plasmas using the gauge/gravity duality

Stefano Ivo Finazzo 02 March 2015 (has links)
O estudo de teorias de calibre não-Abelianas fortemente acopladas, em especial de aspectos térmicos e fora do equilíbrio, é um problema central para a compreensão da Cromodinâmica Quântica (Quantum Chromodynamics - QCD) - em particular, para entender a evolução do Plasma de Quarks e Glúons (Quark-Gluon Plasma- QGP). A técnica mais promissora, QCD na rede, obteve sucesso ao tratar de fenômenos no vácuo e em equilíbrio térmico, como espectros e termodinâmica, mas enfrenta desafios consideráveis ao lidar com fenômenos fora do equilíbrio. Uma ferramenta adaptada para lidar com problemas envolvendo plasmas fortemente acoplados em tempo real é a dualidade gauge/gravity, que mapeia uma Teoria Quântica de Campos (Quantum Field Theory - QFT) fortemente acoplada em d dimensões em uma teoria de gravitação em d + 1 dimensões, a qual, de modo geral, é mais fácil de ser resolvida. Nesta tese, estudamos diversas aplicações da dualidade gauge/gravity em teorias não-Abelianas fortemente acopladas que modelam qualitativamente o QGP. Nós estudamos o cálculo holográfico do potencial entre um par quark-antiquark pesado (QQ) para dipolos QQ estáticos e se movendo com relação ao plasma, apresentando um formalismo geral para o cálculo da parte real e imaginária para uma grande classe de teorias gravitacionais duais. Um estudo da massa de Debye holográfica, baseado no maior comprimento de correlação de operadores ímpares por transformações de CT, foi empreendido, com aplicações em modelos bottom-up que reproduzem a termodinâmica da teoria de Yang-Mills SU(Nc) pura e da QCD. Para estes modelos, também calculamos vários coeficientes de transporte associados com o transporte de cargas no plasma, como a condutitividade elétrica, a constante de difusão de carga e coeficientes de transporte associados a uma teoria de hidrodinâmica relativística de segunda ordem. / The study of strongly coupled non-Abelian gauge theories, especially concerning their thermal and non-equilibrium aspects, is a central problem for understanding Quantum Chromodynamics (QCD) - in particular, to understand the evolution of the Quark-Gluon Plasma (QGP). The most successful approach, lattice QCD, succeeds in dealing with vacuum and equilibrium phenomena, such as spectra and thermodynamics, but faces a considerable challenge when it comes to with non-equilibrium phenomena. A tool adapted to deal with real time problems in strongly coupled plasmas is the gauge/gravity, which maps a strongly coupled d dimensional Quantum Field Theory (QFT) to a d + 1 dimensional theory of gravity, which, in general, is easier to solve. In this thesis, we study several applications of the gauge/gravity duality to strongly coupled non-Abelian theories which model qualitatively the QGP. We deal with the holographic evaluation of the heavy quark-antiquark (Q Q) potential for static and moving QQ dipoles, presenting a general formalism for the computation of the real and imaginary parts for a large class of dual theories of gravity. A study of the holographic Debye mass, based on the largest screening length of CT-odd operators, is pursued, with applications on bottom-up holographic models that reproduce the thermodynamics of pure SU(Nc) Yang-Mills theory and QCD. For these models, we also compute several transport coefficients associated with charge transport in the plasma, such as the electric conductivity, the charge diffusion constant, and transport coefficients associated with a theory of second order relativistic hydrodynamics.
3

Propriedades fora do equilíbrio do plasma de quarks e glúons fortemente acoplado / Far-from-equilibrium properties of the strongly coupled quark-gluon plasma

Critelli, Renato Anselmo Júdica 23 May 2019 (has links)
A cromodinâmica quântica (QCD) é a teoria fundamental que rege as interações fortes, cujas partículas elementares são os quarks e gluons. Em termos de escala de energia, a QCD é caracterizada pela liberdade assintótica (quarks e glúons aproximadamente livres) e confinamento de cor (quarks e gluons confinados dentro de hádrons), sendo o primeiro tratado de maneira perturbativa e o último sendo um fenômeno intrinsicamente não-perturbativo. À temperatura finita, conforme se aumenta a temperatura, a matéria hadrônica sofre uma transição de fase do tipo crossover indo de um gás de hádrons ao plasma de quarks e glúons (QGP). Na vizinhança do crossover, onde os hádrons estão ``derretendo\'\' para formar o QGP, a QCD se encontra em uma região não perturbativa e portanto o QGP nessa região é fortemente acoplado, dificultando estudos analíticos. A chamada dualidade AdS/CFT, também conhecida como holografia, aparece para oferecer uma oportunidade única para o estudo do QGP ao prover um mapa entre teorias fortemente acopladas (muito difícil de serem resolvidas) e uma teoria de gravitação clássica. Na frente experimental, o estudo do QGP é feito em aceleradores de partículas colidindo íons pesados ultrarelativísticos. Nestes experimentos, o QGP criado sofre rápida expansão, com uma intrincada interação entre escalas duras e moles de energia, do estado inicial ao estado final. Tal cenário evidencia a necessidade de formular uma teoria para o QGP que inclua propriedades fora do equilíbrio. Afortunadamente, a dualidade holográfica encaixa-se bem para essa tarefa. Resolvendo-se as equações de Einstein dependentes do tempo, um problema da área da relatividade geral numérica, é possível estudar fenômenos fora do equilíbrio de plasmas fortemente acoplados. Ademais, o diagrama de fase da QCD no plano (T,mu_B), onde T é a temperatura e mu_B o potencial químico bariônico, permanece amplamente desconhecido devido a sua natureza não-perturbativa. Em particular, é conjecturada a existência de um ponto crítico delimitando o crossover de uma transição de fase de primeira ordem. Motivados por tais fatos, esta tese utiliza a dualidade holográfica para analisar o papel do ponto crítico na dinâmica fora do equilíbrio. Por exemplo, é apresentado aqui um estudo de como o ponto crítico afeta o tempo que leva para um plasma não-Abeliano fortemente acoplado adquirir comportamento hidrodinâmico partindo de um estado completamente fora do equilíbrio. / Quantum Chromodynamics (QCD) is the fundamental theory that governs the strong interaction, whose fundamental particles are quarks and gluons. In terms of energy scales, QCD is characterized by asymptotic freedom (approximately free quarks and gluons) and color confinement (quarks and gluons confined inside hadrons), where the former can be treated perturbatively and the latter is an intrinsic non-perturbative phenomenon. At finite temperature, hadronic matter undergoes a crossover phase transition from a gas of hadrons to the quark-gluon plasma (QGP) as the temperature increases. Near the crossover, where hadrons ``melt\'\' to release quarks and gluons, QCD is in its non-perturbative regime and the QGP is strongly coupled, posing great challenges for analytical studies. The so-called AdS/CFT duality, also known as holography, comes to offer a unique opportunity to study the QGP by providing a map between strongly coupled theories (which are generally very hard to solve) and a classical theory of gravity. On the experimental front, the study of the QGP is carried out in particle accelerators by colliding ultrarelativistic heavy ions. In these experiments, the QGP created undergoes rapid expansion and there is a very intricate interplay between soft and hard scales, from initial conditions to final the stream of particles. This scenario makes it evident that one must understand the QGP also out of equilibrium. Fortunately, holography is well suited for this task. By solving the time dependent Einstein\'s equations, using general techniques previously employed in numerical general relativity, one can study non-equilibrium phenomena of strongly coupled plasmas. Furthermore, the QCD phase diagram on the (T,mu_B) plane, where T is the temperature and mu_B the baryon chemical potential, remains largely unknown due to its non-perturbative aspects. In particular, it is conjectured the existence of a critical point delimiting the crossover region from the first order phase transition. Motivated by these facts, this thesis employs holography to analyze the role of the critical point on far-from-equilibrium dynamics. For instance, it is investigated how the critical point affects the time that it takes for a strongly coupled plasma to display hydrodynamic behavior starting from a far-from-equilibrium initial state.

Page generated in 0.1498 seconds