1 |
Aspheric/freeform optical surface description for controlling illumination from point-like light sourcesSasián, José, Reshidko, Dmitry, Li, Chia-Ling 25 November 2016 (has links)
We present an optical surface in closed form that can be used to design lenses for controlling relative illumination on a target surface. The optical surface is constructed by rotation of the pedal curve to the ellipse about its minor axis. Three renditions of the surface are provided, namely as an expansion of a base surface, and as combinations of several base surfaces. Examples of the performance of the surfaces are presented for the case of a point light source. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
|
2 |
Enhancing performance of building integrated concentrating photovoltaic systemsBaig, Hasan January 2015 (has links)
Buildings both commercial and residential are the largest consumers of electricity. Integrating Photovoltaic technology in building architecture or Building Integrated Photovoltaics (BIPV) provides an effective means for meeting this huge energy demands and provides an energy hub at the place of its immediate requirement. However, this technology is challenged with problems like low efficiency and high cost. An effective way of improving the solar cell efficiency and reducing the cost of photovoltaic systems is either by reducing solar cell manufacturing cost or illuminating the solar cells with a higher light intensity than is naturally available by the use of optical concentrators which is also known as Concentrating Photovoltaic (CPV) technology. Integrating this technology in the architecture is referred as Building integrated Concentrating Photovoltaics (BICPV). This thesis presents a detailed performance analysis of different designs used as BICPV systems and proposes further advancements necessary for improving the system design and minimizing losses. The systems under study include a Dielectric Asymmetric Compound Parabolic Concentrator (DiACPC) designed for 2.8×, a three-dimensional Cross compound parabolic concentrator (3DCCPC) designed for 3.6× and a Square Elliptical Hyperbolic (SEH) concentrator designed for 6×. A detailed analysis procedure is presented showcasing the optical, electrical, thermal and overall analysis of these systems. A particular issue for CPV technology is the non-uniformity of the incident flux which tends to cause hot spots, current mismatch and reduce the overall efficiency of the system. Emphasis is placed on modelling the effects of non-uniformity while evaluating the performance of these systems. The optical analysis of the concentrators is carried out using ray tracing and finite element methods are employed to determine electrical and thermal performance of the system. Based on the optical analysis, the outgoing flux from the concentrators is predicted for different incident angles for each of the concentrators. A finite element model for the solar cell was developed to evaluate its electrical performance using the outputs obtained from the optical analysis. The model can also be applied for the optimization of the front grid pattern of Si Solar cells. The model is further coupled within the thermal analysis of the system, where the temperature of the solar cell is predicted under operating conditions and used to evaluate the overall performance under steady state conditions. During the analysis of the DiACPC it was found that the maximum cell temperature reached was 349.5 K under an incident solar radiation of 1000 W/m2. Results from the study carried on the 3DCCPC showed that a maximum cell temperature of 332 K is reached under normal incidence, this tends to bring down the overall power production by 14.6%. In the case of the SEH based system a maximum temperature of 319 K was observed on the solar cell surface under normal incidence. An average drop of 11.7% was found making the effective power ratio of the system 3.4. The non-uniformity introduced due to the concentrator profile causes hotspots in the BICPV system. The non-uniformity was found to reduce the efficiency of the solar cell in the range of 0.5-1 % in all the three studies. The overall performance can be improved by addressing losses occurring within different components of the system. It was found that optical losses occurred at the interface region formed due to the encapsulant spillage along the edges of the concentrator. Using a reflective film along the edge of the concentrating element was found to improve the optical efficiency of the system. Case studies highlighting the improvement are presented. A reflective film was attached along the interface region of the concentrator and the encapsulant. In the case of a DiACPC, an increase of 6% could be seen in the overall power production. Similar case study was performed for a 3DCCPC and a maximum of 6.7% was seen in the power output. To further improve the system performance a new design incorporating conjugate reflective-refractive device was evaluated. The device benefits from high optical efficiency due to the reflection and greater acceptance angle due to refraction. Finally, recommendations are made for development of a new generation of designs to be used in BiCPV applications. Efforts are made towards improving the overall performance and reducing the non-uniformity of the concentrated illumination.
|
3 |
Adaptive Vision Based Scene Registration for Outdoor Augmented RealityCatchpole, Jason James January 2008 (has links)
Augmented Reality (AR) involves adding virtual content into real scenes. Scenes are viewed using a Head-Mounted Display or other display type. In order to place content into the user's view of a scene, the user's position and orientation relative to the scene, commonly referred to as their pose, must be determined accurately. This allows the objects to be placed in the correct positions and to remain there when the user moves or the scene changes. It is achieved by tracking the user in relation to their environment using a variety of technology. One technology which has proven to provide accurate results is computer vision. Computer vision involves a computer analysing images and achieving an understanding of them. This may be locating objects such as faces in the images, or in the case of AR, determining the pose of the user. One of the ultimate goals of AR systems is to be capable of operating under any condition. For example, a computer vision system must be robust under a range of different scene types, and under unpredictable environmental conditions due to variable illumination and weather. The majority of existing literature tests algorithms under the assumption of ideal or 'normal' imaging conditions. To ensure robustness under as many circumstances as possible it is also important to evaluate the systems under adverse conditions. This thesis seeks to analyse the effects that variable illumination has on computer vision algorithms. To enable this analysis, test data is required to isolate weather and illumination effects, without other factors such as changes in viewpoint that would bias the results. A new dataset is presented which also allows controlled viewpoint differences in the presence of weather and illumination changes. This is achieved by capturing video from a camera undergoing a repeatable motion sequence. Ground truth data is stored per frame allowing images from the same position under differing environmental conditions, to be easily extracted from the videos. An in depth analysis of six detection algorithms and five matching techniques demonstrates the impact that non-uniform illumination changes can have on vision algorithms. Specifically, shadows can degrade performance and reduce confidence in the system, decrease reliability, or even completely prevent successful operation. An investigation into approaches to improve performance yields techniques that can help reduce the impact of shadows. A novel algorithm is presented that merges reference data captured at different times, resulting in reference data with minimal shadow effects. This can significantly improve performance and reliability when operating on images containing shadow effects. These advances improve the robustness of computer vision systems and extend the range of conditions in which they can operate. This can increase the usefulness of the algorithms and the AR systems that employ them.
|
Page generated in 0.1112 seconds