• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Decoding LDPC Codes With Low Complexity

Zheng, Chao Unknown Date
No description available.
2

Exit charts based analysis and design of rateless codes for the erasure and Gaussian channels

Mothi Venkatesan, Sabaresan 02 June 2009 (has links)
Luby Transform Codes were the first class of universal erasure codes introduced to fully realize the concept of scalable and fault‐tolerant distribution of data over computer networks, also called Digital Fountain. Later Raptor codes, a generalization of the LT codes were introduced to trade off complexity with performance. In this work, we show that an even broader class of codes exists that are near optimal for the erasure channel and that the Raptor codes form a special case. More precisely, Raptorlike codes can be designed based on an iterative (joint) decoding schedule wherein information is transferred between the LT decoder and an outer decoder in an iterative manner. The design of these codes can be formulated as a LP problem using EXIT Charts and density evolution. In our work, we show the existence of codes, other than the Raptor codes, that perform as good as the existing ones. We extend this framework of joint decoding of the component codes to the additive white Gaussian noise channels and introduce the design of Rateless codes for these channels. Under this setting, for asymptotic lengths, it is possible to design codes that work for a class of channels defined by the signal‐to‐noise ratio. In our work, we show that good profiles can be designed using density evolution and Gaussian approximation. EXIT charts prove to be an intuitive tool and aid in formulating the code design problem as a LP problem. EXIT charts are not exact because of the inherent approximations. Therefore, we use density evolution to analyze the performance of these codes. In the Gaussian case, we show that for asymptotic lengths, a range of designs of Rateless codes exists to choose from based on the required complexity and the overhead. Moreover, under this framework, we can design incrementally redundant schemes for already existing outer codes to make the communication system more robust to channel noise variations.

Page generated in 0.078 seconds