• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 31
  • 11
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Unmanned Aerial Systems for Emergency Response

Brown, Bryan 06 June 2016 (has links)
No description available.
12

Guidance and Control of Autonomous Unmanned Aerial Systems for Maritime Operations

Marshall, Julius Allen 12 January 2023 (has links)
In this dissertation, guidance and control of autonomous unmanned aerial systems (UAS) are explored. Specifically, we investigate model reference adaptive control (MRAC) based systems for tailsitter UAS, and guidance and control of multi-rotor UAS for tactical maneuvering and coverage. Applications, both current and potential, are investigated and gaps in existing technologies are identified. To address the controls problem of a particular class of tailsitter UAS, that is, quadrotor-biplanes, subject to modeling uncertainties, unmodeled payloads, wind gusts, and actuator faults and failures, two approaches are developed. In the first approach, the longitudinal dynamics of a tailsitter UAS are regulated using an MRAC law for prescribed performance and output tracking in a novel control architecture. The MRAC law for prescribed performance and output tracking incorporates a Linear Quadratic Regulator (LQR) baseline controller using integral-feedback interconnections. Constraints on the trajectory tracking error are enforced using barrier Lyapunov functions, and a user-defined rate of convergence of the trajectory tracking error is guaranteed by employing a reference model for the trajectory tracking error's transient dynamics. In this control system, the translational and rotational dynamics are split into an outer loop and an inner loop, respectively, to account for the underactuation of the quadrotor-biplane. In the outer loop, estimates of the aerodynamic forces and MRAC laws are used to stabilize the translational dynamics. Furthermore, the reference pitch angle is deduced such that the vehicle's total thrust never points towards the Earth for safety, and discontinuities inherent to the signed arctangent function commonly used for determining orientations are avoided. In the inner loop, estimates of the aerodynamic moment and an MRAC law are used to stabilize the rotational dynamics. A law for determining the desired total thrust is proposed, which ensures that if the vehicle's orientation is close enough to the desired orientation, then the proper thrust force is applied. A control allocation scheme is presented to ensure that the desired moment of the thrust force is always realized, and constraints on the non-negativity of the thrust force produced by the actuators are satisfied. The proposed control architecture employing MRAC for prescribed performance and output signal tracking is validated in simulation, and the MRAC law for prescribed performance is compared to the classical MRAC law. In the second approach, a unified control architecture based on MRAC is presented which does not separate the longitudinal and lateral-directional dynamics. The translational and rotational dynamics are separated into outer and inner loops, respectively, to address the underactuation of the tailsitter UAS. Since it is expected that the vehicle will undergo large rotations, the tailsitter's orientation is captured using quaternions, which are singularity-free. Furthermore, the windup phenomenon is addressed by employing barrier Lyapunov functions to ensure that the first component of the tracking error quaternion is positive, and thus, the shortest rotation is followed to drive the vehicle's current orientation to the reference orientation. In the outer loop, the desired thrust force is determined using estimates of the aerodynamic forces and an MRAC law. The reference orientation is determined as a solution of the orthogonal Procrustes' problem, which finds the smallest rotation from the current orientation of the thrust force, to the orientation of th desired thrust force. The angular velocity and acceleration cannot be deduced by taking the time derivative of the solution of the orthogonal Procrustes' problem due to the discontinuous nature of the singular value decomposition. Therefore, the twice continuously differentiable function, spherical linear interpolation, is used to find a geodesic joining the unit quaternion capturing the vehicle's current orientation, and the unit quaternion capturing the reference orientation. An interesting result is that the angular velocity and acceleration depend only on the first and second derivatives of the scalar-valued function which parameterizes the spherical linear interpolation function; the actual function is immaterial. However, determining the shape of this function is nontrivial, and hence, an approach inspired by model predictive control is used. In the inner loop, estimates of the aerodynamic moment and an MRAC law are used to stabilize the rotational dynamics, and the thrust force is allocated to the individual propellers. The validity of the proposed control scheme is presented in simulation. An integrated guidance and control system for autonomous UAS is proposed to maneuver in an unknown, dynamic, and potentially hostile environment in a reckless or tactical manner as prescribed by the user. Tactical maneuvering in this guidance and control system is enabled through exploitation of obstacles in the environment for shelter as the vehicle approaches its goal. Reckless maneuvering is enabled by ignoring the presence of nearby obstacles while proceeding towards the goal, while remaining collision-free. The demarcation of reckless and tactical behaviors are bio-inspired, since these tactics are used by animals or ground-based troops. The guidance system fuses a path planner, collision-avoidance algorithm, vision-based navigation system, and a trajectory planner. The path planner is based on the A* search algorithm, and a custom tunable cost-to-come and heuristic function are proposed to enable the exploitation of the obstacles' set for shelter by decreasing the weight of edges in the underlying graph that capture nodes close to the obstacles' set. The consistency of the heuristic is established, and hence, the search algorithm will return an optimal solution, and not expand nodes multiple times. In realistic scenarios, fast replanning is necessary to ensure that the system realizes the desired behavior, and does not collide with obstacles. The trajectory planner is based on fast model predictive control (fMPC), and thus, can be executed in real time. A custom tunable cost function, which weighs the importance of proximity to the obstacles' set and proximity to the goal, is employed to provide another mechanism for enabling tactical behaviors. The novel collision avoidance algorithm is based on the solution of a particular class of semidefinite programming problems, that is, quadratic discrimination. The collision avoidance algorithm produces convex sets of free space near the UAS by finding ellipsoids that separate the UAS from the obstacles' set. The convex sets are used in the fMPC framework as inequality constraints. The collision avoidance algorithm's computational burden is determined empirically, and is shown to be faster than two similar algorithms in the literature. The modules above are integrated into a single guidance system, which supplies reference trajectories to an arbitrary control system, and the validity of the proposed approach is exhibited in several simulations and flight tests. Furthermore, a taxonomy of flight behaviors is presented to understand how the tunable parameters affect the recklessness or stealthiness of the resulting trajectory. Lastly, an integrated guidance and control system for autonomous UAS performing tactical coverage in an unknown, dynamic, and potentially hostile environment in a reckless or tactical manner as prescribed by the user is presented. The guidance problem for coverage concerns strategies and route planning for gathering information about an environment. The aim of gathering information about an unknown environment is to aid in situational awareness and planning for service organizations and first-responders. To address this problem, goal selection, path planning, collision avoidance, and trajectory planning are integrated. A novel goal selection algorithm based on the Octree data structure is proposed to autonomously determine goal points for the path planner. In this algorithm, voxel maps deduced by a navigation system, which capture the occupancy and exploration status of areas of the environment, are segmented into partitions that capture large unexplored areas, and large explored areas. Large unexplored areas are used as candidates for goal points. The feasibility of goal points is determined by employing a greedy $A^*$ technique. The algorithm boasts tunable parameters that allow the user to specify a greedy or systematic behavior when determining a sequence of goal points. The computational burden of this technique is determined empirically, and is shown to be useful for real-time use in realistic scenarios. The path planner is based on the Lifelong Planning $A^*$ ($LPA^*$) search algorithm which is shown to have advantages over the $A^*$ technique. A custom tunable cost-to-come and heuristic function are proposed to enable tactical or reckless path planning. A novel collision avoidance algorithm is proposed as an improved version of the aforementioned collision avoidance algorithm, where the volume of the resulting constraint sets are improved, and thus, more of the free space is captured by the convex set, and hence, the trajectory planner can exploit more of the environment for tactical maneuvering. This algorithm is based on semidefinite programming and a fast approximate convex hull algorithm. The trajectory planner is based on fMPC, employs a custom cost function to enable tactical maneuvering by coasting the surface of obstacles and regulation of the desired acceleration as a function of proximity to shelter, employs barrier functions to constrain the attitude of the vehicle and ensure thrust positivity, and employs a quadrotor UAS' output feedback linearized equations of motion as differential constraints to enable aggressive maneuvering. The efficacy of the proposed system is validated using a custom-made C++ simulator. / Doctor of Philosophy / In recent years, unmanned aerial systems (UAS) such as quadcopters, hexacopters, and octocopters, have seen increased popularity for a myriad of applications including crop monitoring, photography, surveying, surveillance, wireless network extension, search and rescue, firefighter support, and military operations, to name a few. This list of applications stems from UAS' maneuverability, adaptability, accessibility, and their absence of an onboard pilot. While some of these applications can be executed with current capabilities, the performance of these systems could be improved, and there are many applications where UAS could be used to fulfil substantial roles in areas such as logistics, tactical surveillance, and direct human-interaction. However, these applications require a considerable improvement in autopilot design for UAS; shortcomings of current capabilities are identified in this thesis. Indeed, one of the most important improvements to be made is enabling fully autonomous operations where limited human intervention and oversight is necessary for mission success. In this thesis, we present two adaptive control systems for tailsitter UAS to enable accurate trajectory tracking in realistic scenarios with degraded conditions, such as inclement weather with unsteady winds, poorly-modeled dynamics as a result of negligence or a cost-benefit analysis, failing actuators due to overuse or damage from collisions. In the first adaptive control system, we focus on the tailsitter UAS' longitudinal dynamics, and employ a novel adaptive control technique to stabilize the system. In the second adaptive control system, we do not separate the longitudinal and lateral-directional dynamics, and split the tailsitter UAS' translational and rotational dynamics into outer and inner loops, respectively. In this control system, the windup problem is addressed using barrier functions, the reference orientation is determined as a solution to the orthogonal Procrustes' problem, and the system's dynamics are stabilized using model reference adaptive control. Furthermore, in this dissertation, we develop and present a guidance and control system which can be used to enable autonomous intelligence, surveillance, reconnaissance, and logistics (ISRL) operations in unknown, dynamic, and potentially hostile environments. The guidance system enables the UAS to achieve a user-defined behavior which ranges from tactical to reckless. The tactical or reckless behaviors are enabled through the guidance system's path planner, which is based on the A* search algorithm employing custom cost and heuristic function. Similarly, the guidance system's trajectory planner, which is based on fast model predictive control (fMPC), enables tactical or reckless behaviors through a custom cost function. The problem of collision-avoidance is handled through the path planner, which returns collision-free paths, and a novel constraint set generation algorithm which deduces regions of free space near the UAS; these regions are used as constraint sets for the trajectory planner. We validate the proposed approach in simulation and flight tests, and present a taxonomy of flight behaviors.
13

Enhanced Air Transportation Modeling Techniques for Capacity Problems

Spencer, Thomas Louis 02 September 2016 (has links)
Effective and efficient air transportation systems are crucial to a nation's economy and connectedness. These systems involve capital-intensive facilities and equipment and move millions of people and tonnes of freight every day. As air traffic has continued to increase, the systems necessary to ensure safe and efficient operation will continue to grow more and more complex. Hence, it is imperative that air transport analysts are equipped with the best tools to properly predict and respond to expected air transportation operations. This dissertation aims to improve on those tools currently available to air transportation analysts, while offering new ones. Specifically, this thesis will offer the following: 1) A model for predicting arrival runway occupancy times (AROT); 2) a model for predicting departure runway occupancy times (DROT); and 3) a flight planning model. This thesis will also offer an exploration of the uses of unmanned aerial vehicles for providing wireless communications services. For the predictive models of AROT and DROT, we fit hierarchical Bayesian regression models to the data, grouped by aircraft type using airport physical and aircraft operational parameters as the regressors. Recognizing that many existing air transportation models require distributions of AROT and DROT, Bayesian methods are preferred since their output are distributions that can be directly inputted into air transportation modeling programs. Additionally, we exhibit how analysts will be able to decouple AROT and DROT predictions from the traditional 4 or 5 groupings of aircraft currently in use. Lastly, for the flight planning model, we present a 2-D model using presently available wind data that provides wind-optimal flight routings. We improve over current models by allowing free-flight unconnected to pre-existing airways and by offering finer resolutions over the current 2.5 degree norm. / Ph. D.
14

Short range reconnaissance unmanned aerial vehicle / S.J. Kersop.

Kersop, Stefanus Jacobus January 2009 (has links)
Unmanned aerial vehicles (UAVs) have been used increasingly over the past few years. Special Forces of various countries utilise these systems successfully in war zones such as Afghanistan. The biggest advantage is rapid information gathering without endangering human lives. The South African National Defence Force (SANDF) also identified the need for local short range aerial reconnaissance and information gathering. A detailed literature survey identified various international players involved in the development of small hand-launch UAV systems. Unfortunately, these overseas systems are too expensive for the SANDF. A new system had to be developed locally to comply with the unique requirements, and budget, of the SANDF. The survey of existing systems provided valuable input to the detailed user requirement statement (URS) for the new South African development. The next step was to build a prototype using off-the-shelf components. Although this aircraft flew and produced good video images, it turned out to be unreliable. The prototype UAV was then replaced with a standard type model aircraft, purchased from Micropilot. Some modifications were needed to ensure better compliance with the URS. Laboratory and field tests proved that the aircraft can be applied for aerial images, within range of 10 km from the ground control station (GCS). The major limitation is that it can only fly for 40 minutes. Furthermore, the airframe is not robust, needing repairs after only 15 flights. Although the system has shortcomings, it has already been used successfully. It is expected that improved battery technologies and sturdier light-weight materials will further help to improve the system beyond user specifications. / Thesis (MIng (Electrical Engineering))--North-West University, Potchefstroom Campus, 2010.
15

Short range reconnaissance unmanned aerial vehicle / S.J. Kersop.

Kersop, Stefanus Jacobus January 2009 (has links)
Unmanned aerial vehicles (UAVs) have been used increasingly over the past few years. Special Forces of various countries utilise these systems successfully in war zones such as Afghanistan. The biggest advantage is rapid information gathering without endangering human lives. The South African National Defence Force (SANDF) also identified the need for local short range aerial reconnaissance and information gathering. A detailed literature survey identified various international players involved in the development of small hand-launch UAV systems. Unfortunately, these overseas systems are too expensive for the SANDF. A new system had to be developed locally to comply with the unique requirements, and budget, of the SANDF. The survey of existing systems provided valuable input to the detailed user requirement statement (URS) for the new South African development. The next step was to build a prototype using off-the-shelf components. Although this aircraft flew and produced good video images, it turned out to be unreliable. The prototype UAV was then replaced with a standard type model aircraft, purchased from Micropilot. Some modifications were needed to ensure better compliance with the URS. Laboratory and field tests proved that the aircraft can be applied for aerial images, within range of 10 km from the ground control station (GCS). The major limitation is that it can only fly for 40 minutes. Furthermore, the airframe is not robust, needing repairs after only 15 flights. Although the system has shortcomings, it has already been used successfully. It is expected that improved battery technologies and sturdier light-weight materials will further help to improve the system beyond user specifications. / Thesis (MIng (Electrical Engineering))--North-West University, Potchefstroom Campus, 2010.
16

On precise three-dimensional environment modeling via UAV-based photogrammetric systems / Modélisation tridimensionnelle précise de l'environnement à l’aide des systèmes de photogrammétrie embarqués sur drones

Shahbazi, Mozhdeh January 2016 (has links)
Abstract : Images acquired from unmanned aerial vehicles (UAVs) can provide data with unprecedented spatial and temporal resolution for three-dimensional (3D) modeling. Solutions developed for this purpose are mainly operating based on photogrammetry concepts, namely UAV-Photogrammetry Systems (UAV-PS). Such systems are used in applications where both geospatial and visual information of the environment is required. These applications include, but are not limited to, natural resource management such as precision agriculture, military and police-related services such as traffic-law enforcement, precision engineering such as infrastructure inspection, and health services such as epidemic emergency management. UAV-photogrammetry systems can be differentiated based on their spatial characteristics in terms of accuracy and resolution. That is some applications, such as precision engineering, require high-resolution and high-accuracy information of the environment (e.g. 3D modeling with less than one centimeter accuracy and resolution). In other applications, lower levels of accuracy might be sufficient, (e.g. wildlife management needing few decimeters of resolution). However, even in those applications, the specific characteristics of UAV-PSs should be well considered in the steps of both system development and application in order to yield satisfying results. In this regard, this thesis presents a comprehensive review of the applications of unmanned aerial imagery, where the objective was to determine the challenges that remote-sensing applications of UAV systems currently face. This review also allowed recognizing the specific characteristics and requirements of UAV-PSs, which are mostly ignored or not thoroughly assessed in recent studies. Accordingly, the focus of the first part of this thesis is on exploring the methodological and experimental aspects of implementing a UAV-PS. The developed system was extensively evaluated for precise modeling of an open-pit gravel mine and performing volumetric-change measurements. This application was selected for two main reasons. Firstly, this case study provided a challenging environment for 3D modeling, in terms of scale changes, terrain relief variations as well as structure and texture diversities. Secondly, open-pit-mine monitoring demands high levels of accuracy, which justifies our efforts to improve the developed UAV-PS to its maximum capacities. The hardware of the system consisted of an electric-powered helicopter, a high-resolution digital camera, and an inertial navigation system. The software of the system included the in-house programs specifically designed for camera calibration, platform calibration, system integration, onboard data acquisition, flight planning and ground control point (GCP) detection. The detailed features of the system are discussed in the thesis, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The accuracy of the results was evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy were assessed. The second part of this thesis concentrates on improving the techniques of sparse and dense reconstruction. The proposed solutions are alternatives to traditional aerial photogrammetry techniques, properly adapted to specific characteristics of unmanned, low-altitude imagery. Firstly, a method was developed for robust sparse matching and epipolar-geometry estimation. The main achievement of this method was its capacity to handle a very high percentage of outliers (errors among corresponding points) with remarkable computational efficiency (compared to the state-of-the-art techniques). Secondly, a block bundle adjustment (BBA) strategy was proposed based on the integration of intrinsic camera calibration parameters as pseudo-observations to Gauss-Helmert model. The principal advantage of this strategy was controlling the adverse effect of unstable imaging networks and noisy image observations on the accuracy of self-calibration. The sparse implementation of this strategy was also performed, which allowed its application to data sets containing a lot of tie points. Finally, the concepts of intrinsic curves were revisited for dense stereo matching. The proposed technique could achieve a high level of accuracy and efficiency by searching only through a small fraction of the whole disparity search space as well as internally handling occlusions and matching ambiguities. These photogrammetric solutions were extensively tested using synthetic data, close-range images and the images acquired from the gravel-pit mine. Achieving absolute 3D mapping accuracy of 11±7 mm illustrated the success of this system for high-precision modeling of the environment. / Résumé : Les images acquises à l’aide d’aéronefs sans pilote (ASP) permettent de produire des données de résolutions spatiales et temporelles uniques pour la modélisation tridimensionnelle (3D). Les solutions développées pour ce secteur d’activité sont principalement basées sur des concepts de photogrammétrie et peuvent être identifiées comme des systèmes photogrammétriques embarqués sur aéronefs sans pilote (SP-ASP). Ils sont utilisés dans plusieurs applications environnementales où l’information géospatiale et visuelle est essentielle. Ces applications incluent notamment la gestion des ressources naturelles (ex. : agriculture de précision), la sécurité publique et militaire (ex. : gestion du trafic), les services d’ingénierie (ex. : inspection de bâtiments) et les services de santé publique (ex. : épidémiologie et gestion des risques). Les SP-ASP peuvent être subdivisés en catégories selon les besoins en termes de précision et de résolution. En effet, dans certains cas, tel qu’en ingénierie, l’information sur l’environnement doit être de haute précision et de haute résolution (ex. : modélisation 3D avec une précision et une résolution inférieure à un centimètre). Pour d’autres applications, tel qu’en gestion de la faune sauvage, des niveaux de précision et de résolution moindres peut être suffisants (ex. : résolution de l’ordre de quelques décimètres). Cependant, même dans ce type d’applications les caractéristiques des SP-ASP devraient être prises en considération dans le développement des systèmes et dans leur utilisation, et ce, pour atteindre les résultats visés. À cet égard, cette thèse présente une revue exhaustive des applications de l’imagerie aérienne acquise par ASP et de déterminer les challenges les plus courants. Cette étude a également permis d’établir les caractéristiques et exigences spécifiques des SP-ASP qui sont généralement ignorées ou partiellement discutées dans les études récentes. En conséquence, la première partie de cette thèse traite des aspects méthodologiques et d’expérimentation de la mise en place d’un SP-ASP. Le système développé a été évalué pour la modélisation précise d’une gravière et utilisé pour réaliser des mesures de changement volumétrique. Cette application a été retenue pour deux raisons principales. Premièrement, ce type de milieu fournit un environnement difficile pour la modélisation, et ce, en termes de changement d’échelle, de changement de relief du terrain ainsi que la grande diversité de structures et de textures. Deuxièment, le suivi de mines à ciel ouvert exige un niveau de précision élevé, ce qui justifie les efforts déployés pour mettre au point un SP-ASP de haute précision. Les composantes matérielles du système consistent en un ASP à propulsion électrique de type hélicoptère, d’une caméra numérique à haute résolution ainsi qu’une station inertielle. La composante logicielle est composée de plusieurs programmes développés particulièrement pour calibrer la caméra et la plateforme, intégrer les systèmes, enregistrer les données, planifier les paramètres de vol et détecter automatiquement les points de contrôle au sol. Les détails complets du système sont abordés dans la thèse et des solutions sont proposées afin d’améliorer le système et la qualité des données photogrammétriques produites. La précision des résultats a été évaluée sous diverses conditions de cartographie, incluant le géoréférencement direct et indirect avec un nombre, une répartition et des types de points de contrôle variés. De plus, les effets de la configuration des images et la stabilité du réseau sur la précision de la modélisation ont été évalués. La deuxième partie de la thèse porte sur l’amélioration des techniques de reconstruction éparse et dense. Les solutions proposées sont des alternatives aux techniques de photogrammétrie aérienne traditionnelle et adaptée aux caractéristiques particulières de l’imagerie acquise à basse altitude par ASP. Tout d’abord, une méthode robuste de correspondance éparse et d’estimation de la géométrie épipolaire a été développée. L’élément clé de cette méthode est sa capacité à gérer le pourcentage très élevé des valeurs aberrantes (erreurs entre les points correspondants) avec une efficacité de calcul remarquable en comparaison avec les techniques usuelles. Ensuite, une stratégie d’ajustement de bloc basée sur l’intégration de pseudoobservations du modèle Gauss-Helmert a été proposée. Le principal avantage de cette stratégie consistait à contrôler les effets négatifs du réseau d’images instable et des images bruitées sur la précision de l’autocalibration. Une implémentation éparse de cette stratégie a aussi été réalisée, ce qui a permis de traiter des jeux de données contenant des millions de points de liaison. Finalement, les concepts de courbes intrinsèques ont été revisités pour l’appariement stéréo dense. La technique proposée pourrait atteindre un haut niveau de précision et d’efficacité en recherchant uniquement dans une petite portion de l’espace de recherche des disparités ainsi qu’en traitant les occlusions et les ambigüités d’appariement. Ces solutions photogrammétriques ont été largement testées à l’aide de données synthétiques, d’images à courte portée ainsi que celles acquises sur le site de la gravière. Le système a démontré sa capacité a modélisation dense de l’environnement avec une très haute exactitude en atteignant une précision 3D absolue de l’ordre de 11±7 mm.
17

A Hierarchical Architectural Framework for Securing Unmanned Aerial Systems

Leccadito, Matthew 01 January 2017 (has links)
Unmanned Aerial Systems (UAS) are becoming more widely used in the new era of evolving technology; increasing performance while decreasing size, weight, and cost. A UAS equipped with a Flight Control System (FCS) that can be used to fly semi- or fully-autonomous is a prime example of a Cyber Physical and Safety Critical system. Current Cyber-Physical defenses against malicious attacks are structured around security standards for best practices involving the development of protocols and the digital software implementation. Thus far, few attempts have been made to embed security into the architecture of the system considering security as a holistic problem. Therefore, a Hierarchical, Embedded, Cyber Attack Detection (HECAD) framework is developed to provide security in a holistic manor, providing resiliency against cyber-attacks as well as introducing strategies for mitigating and dealing with component failures. Traversing the hardware/software barrier, HECAD provides detection of malicious faults at the hardware and software level; verified through the development of an FPGA implementation and tested using a UAS FCS.
18

Quantifying the impacts of inundated land area on streamflow and crop development

Stuart D Smith (10292588) 06 April 2021 (has links)
<p>The presented work quantifies the impacts of inundated land area (ILA) on streamflow and crop development in the Upper Midwest, which is experiencing a changing climate with observed increases in temperature and precipitation. Quantitative information is needed to understand how upland and downstream stakeholders are impacted by ILA; yet the temporal and spatial extent of ILA and the impact of water storage on flood propagation is poorly understood. Excess water in low gradient agricultural landscapes resulting in ILA can have opposing impacts. The ILA can negatively impact crop development causing financial loss from a reduction or total loss in yield while conversely, ILA can also benefit downstream stakeholders by preventing flood damage from the temporary surface storage that slows water movement into channels. This research evaluates the effects of ILA on streamflow and crop development by leveraging the utility of remotely sensed observations and models.</p><p> </p><p>The influence of ILA on streamflow is investigated in the Red River basin, a predominantly agricultural basin with a history of damaging flood events. An inundation depth-area (IDA) parameterization was developed to parameterize the ILA in a hydrologic model, the Variable Infiltration Capacity (VIC) model, using remotely sensed observations from the MODIS Near Real-Time Global Flood Mapping product and discharge data. The IDA parameterization was developed in a subcatchment of the Red River basin and compared with simulation scenarios that did and did not represent ILA. The model performance of simulated discharge and ILA were evaluated, where the IDA parameterization outperformed the control scenarios. In addition, the simulation results using the IDA parameterization were able to explain the dominant runoff generation mechanism during the winter-spring and summer-fall seasons. The IDA parameterization was extended to the Red River basin to analyze the effects of ILA on the timing and magnitude of peak flow events where observed discharge revealed an increasing trend and magnitude of summer peak flow events. The results also showed that the occurrence of peak flow events is shifting from unimodal to bimodal structure, where peak flow events are dominant in the spring and summer seasons. By simulating ILA in the VIC model, the shift in occurrence of peak flow events and magnitude are better represented compared to simulations not representing ILA.</p><p> </p><p>The impacts of ILA on crop development are investigated on soybean fields in west-central Indiana using proximal remote sensing from unmanned aerial systems (UASs). Models sensitive to ILA were developed from the in-situ and UAS data at the plot scale to estimate biomass and percent of expected yield between the R4-R6 stages at the field scale. Low estimates of biomass and percent of expected yield were associated with mapped observations of ILA. The estimated biomass and percent of expected yield were useful early indicators to identify soybean impacted by excess water at the field scale. The models were applied to satellite imagery to quantify the impacts of ILA on soybean development over larger areas and multiple years. The estimated biomass and percent of expected yield correlated well with the observed data, where low model estimates were also associated with mapped observations of ILA and periods of excessive rainfall. The results of the work link the impacts of ILA on streamflow and crop development, and why it is important to quantify both in a changing climate. By representing ILA in hydrologic models, we can improve simulated streamflow and ILA and represent dominant physical process that influence hydrologic responses and represent shift and seasonal occurrence of peak flow events. In the summer season, where there is an increased occurrence of peak flow events, it is important to understand the impacts of ILA on crop development. By quantifying the impacts of ILA on soybean development we can analyze the spatiotemporal impacts of excess water on soybean development and provide stakeholders with early assessments of expected yield which can help improvement management decisions.</p>
19

Multi-Fidelity Study of Aerodynamics and Aeroacoustics Characteristics of a Quadrotor Biplane Tailsitter

Heydari, Morteza 05 1900 (has links)
Recent advances in manufacturing and growing concerns on the sustainability of aviation environment have led to a remarkable interest in electrical unmanned aerial systems (UASs) in the past decade. Among various UAS types, the newly designed quadrotor biplane tailsitter class is capable of delivering a wide range of civilian and military tasks, relying on its Vertical Take-Off and Landing (VTOL) capability as well as great maneuverability. Nevertheless, as such UASs employ rotors to generate thrust, and wings to generate lift, and operate at less-understood low to mid-Reynolds flow regime, they experience complicated flight aerodynamics with a noise generation mechanism which is different from common aircrafts. The present work aims at addressing this knowledge gap by studying the aerodynamics and aeroacoustics of a UAS of this type designed by the Army Research Lab. High-fidelity computational fluid dynamics (CFD) simulations are carried out for a wide range of operating conditions to understand the physics involved in the UAS aerodynamics and characterize its performance. Relying on the CFD results, a physics-informed reduced order model (ROM) is developed based on machine learning algorithms, to predict the propellers effects on the wings and calculate the dominant loads. The results of this study indicate that the UAS aerodynamics is significantly influenced by the propeller-wing interaction, which makes it challenging to estimate the loads by classic methods. The proposed physics-informed ROM shows a promising performance based on its computational cost and accuracy. Additionally, it is found that the aeroacoustics of the UAS is ruled by a two-way mechanism through which the propellers and the structure impose unsteadiness on each other.
20

Linking remotely-sensed UAS imagery to forage quality in an experimental grazing system

Norman, Durham Alexander 06 August 2021 (has links)
Forage quality is a principal factor in managing both herbivores and the landscapes they use. Nutrition varies across the landscape, and in turn, so do the distributions of these populations. With the rise of remote sensing technologies (i.e. satellites, unmanned aerial vehicles, and multi/hyperspectral sensors), comes the ability to index forage health and nutrition swiftly. However, no methodology has been developed which allows managers to use unmanned aerial systems to the fullest capacity. The following methodologies produce compelling evidence for predicting forage quality metrics (such as fiber, carbohydrates, and digestibility) using 5 measured bands of reflectance (Blue, Green, Red, Red Edge, and NIR), 3 derived vegetation indices (NDVI, EVI and VARI), and a variety of environmental factors (i.e. time and sun angles) in a LASSO framework. Fiber content, carbohydrates, and digestibility showed promising model performance in terms of goodness-of-fit (R2= 0.624, 0.637, and 0.639 respectively).

Page generated in 0.1089 seconds