71 |
Rotor/Fuselage Unsteady Interactional Aerodynamics: A New Computational ModelBoyd, David Douglas Jr. 13 August 1999 (has links)
A new unsteady rotor/fuselage interactional aerodynamics model has been developed. This model loosely couples a Generalized Dynamic Wake Theory (GDWT) to a Navier-Stokes solution procedure. This coupling is achieved using a newly developed unsteady pressure jump boundary condition in the Navier-Stokes model. The new unsteady pressure jump boundary condition models each rotor blade as a moving pressure jump which travels around the rotor azimuth =and is applied between two adjacent planes in a cylindrical, non-rotating grid. Comparisons are made between predictions using this new model and experiments for an isolated rotor and for a coupled rotor/fuselage configuration. / Ph. D.
|
72 |
Circulation Methods in Unsteady and Three-dimensional FlowsYuan, Jiankun 02 May 2002 (has links)
The largely unstudied extension of ultrasonic circulation measurement techniques (UCMT) to determine instantaneous lift in unsteady and three-dimensional flows has been addressed in this work. A combined analytical-numerical-experimental approach was undertaken with the goal of developing methods to properly convert the measurable time-dependent bound circulation to instantaneous lift force in unsteady flows. The measurement of mean sectional lift distribution along structure spans in three-dimensional flows was also studied. An unsteady correction method for thin airfoils was developed analytically and validated numerically (with finite element solutions) to properly convert bound circulation to instantaneous lift based on unsteady potential flow theory. Results show that the unsteady correction method can provide increased accuracy for unsteady lift prediction over the Kutta-Joukowski method used in previous unsteady flow studies. The unsteady correction model generally should be included for instantaneous lift prediction as long as the bound circulation is time-dependent. Using the same framework, we also studied determination of instantaneous lift forces on stationary bluff bodies (circular cylinders) at low Reynolds number (Re=100). Various force models, including an approximate vortex force model, were studied. A new unsteady model, similar to that developed for the thin airfoils, using instantaneous bound circulation values, was proposed. Another important issue studied in this thesis is the effect of acoustic path sensitivity on bound circulation determination, which we found to be crucial for accurately predicting the instantaneous lift in both unsteady flat plate and cylinder flows. Proper path selection should take into account the location of boundary layers, attached and shed vortices. These findings will be useful in future experimental design of UCMT, PIV and LDV methods. Finally, we used the UCMT method to experimentally study the mean spatial lift distribution along structures. Low Reynolds number low aspect ratio (AR) wings that have application in micro-aerial-vehicles (MAV) were studied. The spanwise circulation (lift) distribution along the MAV wings exhibits a peak (maximum), and deviates from predictions of Prandtl's lifting line theory. Although only 'linear' lift (due to bound circulation) was measured, comparison with force balance results showed that reasonable integrated lift values on low Re, low AR wings can be obtained using UCMT.
|
73 |
Modélisation des efforts aérodynamiques instationnaires pour la prévision du phénomène de tremblement sur des avions civils / Modelling unsteady aerodynamics loads for buffeting prediction on civil aircraftsCalderón, Raúl 10 February 2014 (has links)
Le tremblement est un phénomène qui touche diverses parties de l'avion, pouvant créer des problèmes de fatigue structurelle ou de confort et limiter l'enveloppe de vol. Il est par conséquent important de comprendre ce phénomène afin de mieux le prévoir. Quatre types de tremblement sont étudiés dans cette thèse, le tremblement de l'empennage horizontal, le tremblement intrados voilure, le tremblement de l'APF et le tremblement de l'extrados voilure. La première partie du mémoire détaille la physique de ces phénomènes à partir d'informations recueillies dans la littérature et de l'analyse de différentes campagnes d'essais en soufflerie. Cette partie met ainsi en évidence les caractéristiques instationnaires propres à chaque type de tremblement. La deuxième partie présente l'état de l'art sur la prévision du tremblement, permettant de montrer non seulement les défauts associés aux méthodes antérieures de modélisation mais également les avantages de l'utilisation de certains outils comme l'approche numérique pour mieux comprendre ces phénomènes. Finalement, la troisième partie présente le nouveau modèle semi-empirique basé sur les fonctions de cohérence et développé pour mieux représenter les phénomènes de tremblement étudiés. Une validation de ce modèle a été effectuée sur les différentes campagnes d'essais en soufflerie, donnant des résultats probants pour la plupart des phénomènes étudiés. / The buffeting is a phenomenon that can affect various parts of the aircraft creating problems of structural fatigue or comfort as well as limiting the flight envelope. It is hence important to understand this phenomenon in order to be able to better predict it. Four types of buffeting are studied in this thesis, the horizontal tail plane buffeting, the wing lower surface buffeting, the APF buffeting and the wing upper surface buffeting. The first part of the thesis describes the physics of these phenomena based on the information collected in the literature and analysis of different wind tunnel test campaign data. This section highlights the unsteady characteristics of each buffeting phenomenon. The second part presents the state of the art of the buffeting prediction, showing not only the difficulties associated with previous modelling methods but also the benefits of the use of certain tools such as CFD to better understand these phenomena. Finally, the third part presents the new semi-empirical model based on coherence functions and developed to better predict the different types of buffeting. A validation of this model was performed on various wind tunnel tests campaigns giving very good results for most of the analysed phenomena.
|
74 |
Effect of clocking on unsteady rotor blade loading in a low-speed axial compressor at design and off-design operating conditionsJia, H-X, Xi, G., Müller, L., Mailach, R., Vogeler, K. 03 June 2019 (has links)
This paper presents the results of stator clocking investigations at a design point and an operating point near the stability limit in a low-speed research compressor (LSRC). The unsteady flow field of the LSRC at several clocking configurations was investigated using a three-dimensional unsteady, viscous solver. The unsteady pressure on the rotor blades at midspan (MS) was measured using time-resolving piezoresistive miniature pressure transducers. The effect of clocking on the unsteady pressure fluctuation at MS on the rotor blades is discussed for different operating points. Based on the unsteady profile pressures, the blade pressure forces were calculated. The peak-to-peak amplitudes of the unsteady blade pressure forces are presented and analysed for different clocking positions at both the design point and the operating point near the stability limit of the compressor.
|
75 |
An Experimental Investigation of Unsteady Surface Pressure on Single and Multiple AirfoilsMish, Patrick Francis 15 April 2003 (has links)
This dissertation presents measurements of unsteady surface pressure on airfoils encountering flow disturbances. Analysis of measurements made on an airfoil immersed in turbulence and comparisons with inviscid theory are presented with the goal of determining the effect of angle of attack on an airfoils inviscid response. Unsteady measurements made on the surface of a linear cascade immersed in periodic flow are presented and analyzed to determine the relationship between the blades inviscid response and tip leakage vortex strength.
Measurements of fluctuating surface pressure were made on a NACA 0015 airfoil immersed in grid generated turbulence. The airfoil model has a 2' chord and spans the 6' Virginia Tech Stability Wind Tunnel test section. Two grids were used to investigate the effects of turbulence length scale on the surface pressure response. A large grid which produced turbulence with an integral scale 13% of the chord and a smaller grid which produced turbulence with an integral scale 1.3% of the chord. Measurements were performed at angles of attack from 0 to 20. An array of microphones mounted subsurface was used to measure the unsteady surface pressure. The goal of this measurement was to characterize the effects of angle of attack on the inviscid response.
Lift spectra calculated from pressure measurements at each angle of attack revealed two distinct interaction regions; for reduced frequencies < 10 a reduction in unsteady lift of up to 7 decibels (dB) occurs while an increase occurs for reduced frequencies > 10 as the angle of attack is increased. The reduction in unsteady lift at low reduced frequencies with increasing angle of attack is a result that has never before been shown either experimentally or theoretically. The source of the reduction in lift spectral level appears to be closely related to the distortion of inflow turbulence based on analysis of surface pressure spanwise correlation length scales. Furthermore, while the distortion of the inflow appears to be critical in this experiment, this effect does not seem to be significant in larger integral scale (relative to the chord) flows based on the previous experimental work of McKeough (1976) suggesting the airfoils size relative to the inflow integral scale is critical in defining how the airfoil will respond under variation of angle of attack.
A prediction scheme is developed that correctly accounts for the effects of distortion when the inflow integral scale is small relative to the airfoil chord. This scheme utilizes Rapid Distortion Theory to account for the distortion of the inflow with the distortion field modeled using a circular cylinder.
Measurement of the unsteady surface pressure response of a linear cascade in periodic disturbance is presented. Unsteady pressure was measured on the suction and pressure side of two cascade blades with an array of 24 microphones (12 per blade side) mounted subsurface. The periodic disturbance was generated using a pair of vortex generators attached to a moving end wall. Measurements were made for 8 tip gaps (t/c = 0.00825, 0.0165, 0.022, 0.033, 0.045, 0.057, 0.079, 0.129) and phased averaged with respect to the vortex generator pair position. This measurement was motivated by the results presented by Ma (2003). The work of Ma (2003) suggested that tip leakage vortex shedding in the presence of a periodic disturbance is heavily influenced by the inviscid response of the cascade blade. This conclusion was arrived at by Ma's (2003) observation that as the tip gap is increased the amount of fluctuation in the tip leakage vortex circulation increases dramatically, in fact, many times the circulation in the inflow vortices.
Unsteady pressure measurements reveal that the blade response involves a complex interaction of both inviscid response and viscous phenomena. However, a close relationship between unsteady tip loading and tip leakage vortex circulation is revealed suggesting the inviscid response is significant in determining the tip leakage vortex circulation. Additionally, predictions using inviscid theory agree well with measured levels of unsteady tip loading. As such, inviscid theory may be useful for predicting the tip leakage circulation and perhaps, pressure fluctuations in the tip leakage vortex. / Ph. D.
|
76 |
Correlation between Unsteady Loading and Tip Gap Flow Occurring in a Linear Cascade with Simulated Stator-Rotor InteractionStaubs, Joshua Kyle 07 July 2005 (has links)
This thesis presents the results of a study performed in the Virginia Tech low speed linear cascade wind tunnel operating at a Reynolds number of 382,000 designed to model an axial compressor rotor. To simulate the flow created by the junction of a set of inlet guide vanes and the compressor casing, vortex generators were glued to a moving end wall. In this investigation, the tip clearance was varied from 0.83% to 12.9% chord. Measurements of the midspan and the tip blade loading were made using static pressure taps. The tip loading shows that the minimum suction surface pressure coefficient increases in magnitude linearly up to a tip clearance of 7.9% chord. Unsteady pressure was measured on the pressure and suction surfaces at the tip of two cascade blades using an array of 23 microphones mounted subsurface. These measurements reveal that the unsteady pressure at the blade tip is a linear function of tip clearance height. The instantaneous pressure shows that the surface pressure at the blade tip has the same character regardless of whether or not the blade is disturbed by the inflow vortices. This suggests that the vortex generators simply stimulate and organize the existing response of the blade. Single sensor hot-wire measurements were made within the tip clearance on the suction side of the blade 1mm from the tip gap exit. These measurements show that the mass flux through the tip clearance is closely related to the pressure difference across the tip gap. / Master of Science
|
77 |
Numerical study of the onset of instability in the flow past a sphere.Kim, Inchul. January 1989 (has links)
Experiment shows that the steady axisymmetric flow past a sphere becomes unstable in the range 120 < Re < 300. The resulting time-dependent nonaxisymmetric flow gives rise to nonaxisymmetric vortex shedding at higher Reynolds numbers. The present work reports a computational investigation of the linear stability of the axisymmetric base flow. When the sphere is towed, fixed, or otherwise constrained, stability is determined solely by the Reynolds number. On the other hand, when the sphere falls due to gravity, the present work shows that a additional parameter, the ratio of fluid density to sphere density (β = ρ(f)/ρ(s)) is involved. We use a spectral technique to compute the steady axisymmetric flow, which is in closer agreement with experiment than previous calculations. We then perform a linear stability analysis of the base flow with respect to axisymmetric and nonaxisymmetric disturbances. A spectral technique similar to that employed in the base flow calculation is used to solve the linear disturbance equations in streamfunction form for axisymmetric disturbances, and in a modified primitive variable form for nonaxisymmetric disturbances. For the density ratio β = 0, which corresponds to a fixed sphere, the analysis shows that the axisymmetric base flow undergoes a Hopf bifurcation at Re = 175.1, with the critical disturbance having azimuthal wavenumber m = 1. The results are favorably compared to previous experimental work.
|
78 |
Vortices shed by accelerating flat platesMatjoi, Morapeli Michael January 2017 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering
Johannesburg, May 2017 / Flow around flat plates that were uniformly accelerated from rest with acceleration of 13g is analysed with overset mesh from Star CCM+ commercial CFD software. The particular interest is more on the vortices shed from the plate edges. Three 8mm thick plates of the same cross-sectional areas (108mm length equilateral triangular, 71mm length square and 80mm diameter circular) were simulated. The validation of the numerical method was achieved by using laser vapor sheet method to visualize the flow profiles of accelerating circular plate and comparing the CFD and experimental results. The CFD and experimental results were consistent with each other.
It was found that when a plate accelerated in air, it displaced air particles out of its way. The shear layers of air separated from the front edges of the plate and rolled around a vortex core forming a primary vortex ring in the plate wake. The size of the primary vortex increased with Reynolds number (Re) that was increasing with time. This was because as Re increased, more fluid particles were displaced from the front face of the plate at a time. More displacement of the fluid particles led to shear layers separating from the plate edges with stronger momentum resulting in larger vortex ring. The shape of the primary vortex depended on the shape of the accelerating plate. For the circular plate, all the points on the front edge being equidistant from the plate centroid, fluid particles were evenly displaced from that separation edge. The result was an axis-symmetric ring of primary vortex around a circular vortex core. The asymmetric plates (triangular and square) did not evenly displace air particles from their edges of separation. The result was an asymmetric vortex ring. More air particles separated from the plate at separation points closest to the plate centroid and led to the largest vortical structure there. That is; the primary vortex ring was largest at the midpoints of the plate edges because they were the closest points of separation from the plate centroid. The size of the primary vortex continuously reduced from the mid-points of the plate edges to the corners. The corners had the smallest primary vortical structure due to being furthest points of separation from the plate centroid. The parts of the vortex ring from the two edges of the plate interacted at the corner connecting those edges. / MT 2017
|
79 |
Estudo analítico e experimental dos fenômenos transitórios durante o enchimento de tubulações ramificadas / Analitic and experimental study of the transitory phenomena during filling of pipelines with ramificationsCoutinho, Jefferson Luís 19 July 2002 (has links)
Atualmente, os avanços tecnológicos, especialmente dos recursos computacionais, possibilitam a realização de cálculos cada vez mais complexos. Em função destes avanços, transitórios hidráulicos antes desprezados ou estimados de forma rudimentar já podem ser calculados, especialmente nos casos em que o comportamento dos transitórios é crítico. Assim, torna-se necessário o desenvolvimento de métodos de cálculo que permitam prever quantitativamente tais transitórios uma vez que não há solução analítica para este problema. Neste trabalho são estudadas as condições de contorno para a utilização do modelo rígido de coluna líquida e sua respectiva solução numérica para o cálculo de transitórios durante o enchimento de uma tabulação com ramificação. Os modelos matemáticos foram testados em laboratório sob diversas condições, comprovando a viabilidade da utilização das ferramentas teóricas e numéricas desenvolvidas. / Nowadays there have been many technological advances, especially related to computational resources, that make possible more complex and huge calculations. Due to these advances, the evaluation of hydraulics transients, which have been disregarded or roughly estimated, is allowed to be more precisely performed especially when transient phenomena have significant importance. Then, the development of calculating methods that evaluates these transients effects becomes necessary once the analitic solution to these problems does not exist. This work presents the study of the boundary conditions of the rigid model applied to the fluid column and its numeral solution in order to calculate the transient behavior during filling of pipeline with ramifications. The results of mathematical models were compared with those from laboratory experiments under several conditions proving the feasibility of theoretical and numeral models.
|
80 |
Synchronization and phase dynamics of oscillating foilsUnknown Date (has links)
In this work, a two-dimensional model representing the vortices that animals produce, when they are flying/swimming, was constructed. A D{shaped cylinder and an oscillating airfoil were used to mimic these body{shed and wing{generated vortices, respectively. The parameters chosen are based on the Reynolds numbers similar to that which is observed in nature (104). In order to imitate the motion of ying/swimming, the entire system was suspended into a water channel from frictionless air{bearings. The position of the apparatus in the channel was regulated with a linear, closed loop PI controller. Thrust/drag forces were measured with strain gauges and particle image velocimetry (PIV) was used to examine the wake structure that develops. The Strouhal number of the oscillating airfoil was compared to the values observed in nature as the system transitions between the accelerated and steady states... As suggested by previous work, this self-regulation is a result of a limit cycle process that stems from nonlinear periodic oscillations. The limit cycles were used to examine the synchronous conditions due to the coupling of the foil and wake vortices. Noise is a factor that can mask details of the synchronization. In order to control its effect, we study the locking conditions using an analytic technique that only considers the phases.. The results suggest that Strouhal number selection in steady forward natural swimming and flying is the result of a limit cycle process and not actively controlled by an organism. An implication of this is that only relatively simple sensory and control hardware may be necessary to control the steady forward motion of man-made biomimetically propelled vehicles. / by Cyndee L. Finkel. / Thesis (Ph.D.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
|
Page generated in 0.0336 seconds