1 |
Semantic Topic Modeling and Trend AnalysisMann, Jasleen Kaur January 2021 (has links)
This thesis focuses on finding an end-to-end unsupervised solution to solve a two-step problem of extracting semantically meaningful topics and trend analysis of these topics from a large temporal text corpus. To achieve this, the focus is on using the latest develop- ments in Natural Language Processing (NLP) related to pre-trained language models like Google’s Bidirectional Encoder Representations for Transformers (BERT) and other BERT based models. These transformer-based pre-trained language models provide word and sentence embeddings based on the context of the words. The results are then compared with traditional machine learning techniques for topic modeling. This is done to evalu- ate if the quality of topic models has improved and how dependent the techniques are on manually defined model hyperparameters and data preprocessing. These topic models provide a good mechanism for summarizing and organizing a large text corpus and give an overview of how the topics evolve with time. In the context of research publications or scientific journals, such analysis of the corpus can give an overview of research/scientific interest areas and how these interests have evolved over the years. The dataset used for this thesis is research articles and papers from a journal, namely ’Journal of Cleaner Productions’. This journal has more than 24000 research articles at the time of working on this project. We started with implementing Latent Dirichlet Allocation (LDA) topic modeling. In the next step, we implemented LDA along with document clus- tering to get topics within these clusters. This gave us an idea of the dataset and also gave us a benchmark. After having some base results, we explored transformer-based contextual word and sentence embeddings to evaluate if this leads to more meaningful, contextual, and semantic topics. For document clustering, we have used K-means clustering. In this thesis, we also discuss methods to optimally visualize the topics and the trend changes of these topics over the years. Finally, we conclude with a method for leveraging contextual embeddings using BERT and Sentence-BERT to solve this problem and achieve semantically meaningful topics. We also discuss the results from traditional machine learning techniques and their limitations.
|
Page generated in 0.175 seconds