• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cellular analysis and PNA encoded libraries

Svensen, Nina January 2011 (has links)
A peptide nucleic acid (PNA) encoded 1296 member peptide library was synthesised and incubated with a variety of cell types. Library members entering cells were extracted, hybridised onto DNA microarrays and the peptide identity was determined via deconvolution. Global consensus analysis highlighted the tetrapepide, Glu-Llp- Glu-Glu (Llp is 6-hexamine-N-aminoacetic acid), a surprise in view of the basic residues typically observed in cell penetrating peptides. When evaluated, Glu-Llp- Glu-Glu revealed cellular uptake comparable to a known basic peptide (tetraLlp). In depth delineation via clustering analysis allowed assessment of differential cellular uptake, with the identified peptides showing clear cellular specificity. This was verified by peptide synthesis and cellular uptake analysis by flow-cytometry, and in all cases an endocytic uptake mechanism was confirmed. This approach establishes a strategy for the identification of short peptides as tools for selective delivery into specific cell types. The incubation of a 10,000 member PNA-encoded peptide library with D54 and HEK293T transfected with CCR6 cells followed by microarray analysis allowed detailed information on the interaction between peptide-ligands and cell surface receptors to be extracted. This allowed the identification of new ligands for integrins and G-protein coupled receptors and offers a novel approach to ligand discovery allowing the comparative analysis of different cell types for the identification of differences in surface-receptor ligands and/or receptor expression between various cell types. In addition, this work included the development of a novel method for the indirect amplification of a PNA library by amplification of a complementary DNA library hybridised to the PNA. The generation of 10,000 defined pieces of DNA would have a myriad of applications, not least in the area of defined or directed sequencing and synthetic biology, but also in applications associated with encoding and tagging. By this approach DNA microarrays were used to allow the linear amplification of immobilised DNA sequences on an array followed by PCR amplification. Arrays of increasing sophistication (1; 10; 3875; 10,000 defined oligonucleotides) were used to validate the process, with sequences verified by selective hybridisation to a complementary DNA microarray with DNA sequencing demonstrating error rates of ca ≈ 0.2%. This technique offers an economical and efficient way of producing hundreds to thousands of specific DNA primers, while the DNA-arrays can be used as “factories” allowing specific DNA oligonucleotide pools to be generated with or without masking. This study also demonstrated a significant variance observed between the sequence frequencies found via Solexa sequencing compared to microarray analysis.
2

Titanium dioxide nanoparticle uptake across the isolated perfused intestine of rainbow trout : physiological mechanisms and a comparison with Caco-2 cells

Al-Jubory, Aliaa Rasheed January 2013 (has links)
The wide use of nanoscale materials in food and health care products raises the concern of their possible uptake across the gastrointestinal tract, but very limited data are available on their uptake kinetics, and the potential hazards for humans. In this study, the uptake mechanism of titanium dioxide (TiO2) across the isolated perfused fish intestine and human intestinal Caco-2 cells were evaluated. The in vitro preparation of the whole gut sac and the isolated perfused intestine of rainbow trout were performed using both bulk and nano TiO2 in a concentration of 1 mg l-1 for up to 4 h. The results showed that the Ti from both bulk and TiO2 NPs were mainly accumulated in the mid and hind intestine, with 80% or more of the accumulation in the mucosa rather than the underlying muscularis. Perfused intestines showed a saturable, time-dependent accumulation of the Ti from TiO2 and the uptake of Ti from exposure to NPs was faster than that of the bulk form. The uptake of Ti from exposure to TiO2 NPs increases 10 fold when the CO2 in the gas mixture was lowered to 0.5%. Subsequently, further investigation on the mechanisms of uptake of TiO2 was applied using different kinds of inhibitors. Adding 10 mmol l-1 cyanide did not stop Ti uptake from TiO2 exposures, and 100 µmol l-1 vanadate (ATPase inhibitor) caused a 2.8 fold reduction in the net uptake rate of Ti for the TiO2 NP exposure. Luminal additions of 120 IU ml-1 nystatin (endocytosis inhibitor) blocked the uptake of Ti from both bulk and TiO2 NPs treatments. The results indicate that Ti accumulation from TiO2 exposures was sensitive to both nystatin and vanadate; the former suggesting that there is an endocytosis involvement in the uptake of TiO2 across the intestinal epithelium. Human intestinal Caco-2 cell showed a steady, saturable and time-dependent accumulation of Ti over 24 h exposures to 1 mg l-1 TiO2 (for all forms of TiO2). A scanning electron microscope study indicated the appearance of the particles underneath the cells, increasing the evidence of the Ti uptake from different forms of TiO2 by Caco-2 cells. Both nystatin and vanadate increase the accumulation of TiO2 which suggests interference of these drugs with endocytic pathways. All the data in the thesis demonstrates Ti uptake across the intestinal epithelium from TiO2 exposures involving CO2-dependent and nystatin-sensitive mechanisms. The results in this thesis have contributed to some understanding on the behaviour, uptake and effects of the TiO2 NPs across the intestine; and highlight the possible dietary hazard of the NPs to human health.
3

Design, Characterization and Application of Amphipathic Peptides for siRNA Delivery

Jafari, Mousa 06 November 2014 (has links)
Short interfering RNAs (siRNAs) are 21-23 nucleotide-long double-stranded RNA molecules that can trigger the RNA interference (RNAi). RNAi is a post-transcriptional gene silencing process whereby siRNAs induce the sequence-specific degradation of complementary messenger RNA (mRNA). Despite their promising therapeutic capabilities, siRNA-based strategies suffer from enzymatic degradation and poor cellular uptake. Several carrier-based approaches have been employed to enhance the stability and efficiency of siRNA delivery. Considering their safety, efficiency, and targeting capabilities, peptide-based delivery systems have shown great promise for overcoming the main obstacles in siRNA therapeutic delivery. Peptides are versatile and easily designed to incorporate a number of specific attributes required for efficient siRNA delivery. This thesis focuses on the design, characterization and utilization of a new class of amphipathic peptides for siRNA delivery. The study includes: (i) designing amphipathic, amino acid pairing peptide sequences for siRNA delivery, (ii) siRNA delivery experiments in vitro to evaluate transfection efficacy of the designed peptides, (iii) physicochemical characterization of the interaction between promising peptides and siRNA, and (iv) identifying internalization pathway and kinetics of a promising peptide, C6M1. The peptide C6, an 18-mer amphipathic, amino acid pairing peptide, was designed as an siRNA delivery carrier by incorporating three types of amino acids, i.e., arginine, leucine, and tryptophan. This peptide adopted a helical structure upon co-assembling with siRNA. The C6-siRNA co-assembly showed a size distribution between 50 and 250 nm, confirmed by dynamic light scattering and atomic force microscopy. The C6-siRNA interaction enthalpy and stoichiometry were 8.8 kJ.mol-1 and 6.5, respectively, obtained by isothermal titration calorimetry. A minimum C6:siRNA molar ratio of 10:1 was required to form stable co-assemblies/complexes, indicated by agarose gel shift assay and fluorescence spectroscopy. C6 showed lower toxicity and higher efficiency in cellular uptake of siRNA, compared with Lipofectamine 2000, a lipid-based positive control. Fluorescence microscopy images confirmed the localization of C6-siRNA complexes in the cytoplasm. In order to enhance the solubility and delivery efficiency further, a modified peptide, C6M1, was designed by replacing three leucine with tryptophan residues in the C6 sequence. The fluorescence assay confirmed that the sequence mutation significantly increased the solubility of C6M1. C6M1 adapted a stable helical structure in saline or upon interaction with siRNA. The toxicity assay showed lower toxicity of C6M1 with an IC50 (the concentration of peptide at 50% cell viability) of 22 ??M, compared with C6 with that of 12 ??M. Naked siRNA was completely degraded after 4 h incubation in 50% serum, while the siRNA in complex with C6M1 was preserved even after 24 h. Western blotting showed a significant decrease in GAPDH protein contents (75%) in CHO-K1 Chinese hamster ovary cells, 48 h after treatment with C6M1-GAPDH siRNA complexes. The interaction of C6M1-siRNA complexes with cell surface and the mechanisms involved in the internalization of the complex in different size ranges were studied. Heparin and chlorate treatments revealed that the electrostatic interaction of the C6M1-siRNA complex with heparan sulphate proteoglycans at the cell surface is required to trigger the uptake process. Using endocytic inhibitors, it was found that small C6M1-siRNA complexes (mean ~155 nm) mainly enter CHO-K1 cells through an energy-independent mechanism, most likely involving direct translocation. In contrast, large complexes (mean ~460 nm) internalize the cells mainly through a lipid raft-dependant macropinocytosis. The integrity of the cytoskeletal components also showed significant impact on the efficient internalization of the C6M1-siRNA complex. The kinetics experiments confirmed the fast internalization of small complexes (with uptake half-time of 25 min) in comparison to large complexes (70 min). This work provides essential information for peptide design and characterization in the development of amphipathic peptide-based siRNA delivery.

Page generated in 0.0864 seconds