• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of overhead irrigation on nitrogen dynamics and marketable yield of potato

Abbas, Haider 01 April 2015 (has links)
In Southern Manitoba, potato producers are experiencing wetter and drier conditions within the soil profile during the growing season leading to poor quality and inconsistent yields. Russet Burbank Potato cultivar was grown in Southern Manitoba on fine sandy loam soil in a two year (2013-2014) study using two water management treatments: (i) overhead irrigation and (ii) no-irrigation. The main objectives of the study were (i) to assess the impact of overhead irrigation on water table depth and potato yield (ii) to estimate the shallow groundwater contribution to potato water requirement through upward flux (iii) to track the nitrogen dynamics within the potato root-zone under overhead irrigation and no-irrigation scenarios (iv) to examine the effects of no-irrigation and overhead irrigation system at critical growth stages on marketable yield and quality of potatoes. In 2013, water was applied using a linear move irrigation system and in 2014 a rain gun irrigation system was used for the irrigated treatment. Volumetric soil water content, precipitation, irrigation depth, water table depth, nitrate concentration and electrical conductivity in potato root-zone, groundwater electrical conductivity, weather variables, total potato yield, marketable yield, and quality parameters were measured. The total yield was not significantly different between the two treatments in both years. The marketable yield of the irrigated treatment (36.89 MT/ha) was 20% higher (p = 0.017) compared to the non-irrigated treatment (30.74 MT/ha) in 2013. However, no significant difference was found between the irrigated (39.0 MT/ha) and non-irrigated (43.7 MT/ha) treatments in 2014. Potato yields from both treatments were significantly correlated with the average groundwater depth. Water balance analysis within the root-zone during rainy and rain-free periods showed that nitrate rich groundwater may have contributed to some of the crop water demand. The lack of rainfall and high temperature during tuber initiation and tuber bulking stages resulted in the accumulation of high concentration of nitrates within the root-zone by the late release of nitrates from the polymer-coated urea and the upward migration of groundwater containing 55 ppm and 70 ppm of nitrates in the 2013 and 2014 growing seasons, respectively. Overhead irrigation was found to be economically advantageous to produce better quality potatoes with higher marketable yields.
2

Advanced Evapotranspiration Measurement for Crop Water Management in the Red River Valley

Niaghi, Ali Rashid January 2019 (has links)
As the main component of terrestrial energy and water balance, evapotranspiration (ET) moves a large amount of water and energy in the form of latent heat flux from bare soil and vegetated surfaces into the atmosphere. Despite the development of many methods and equations through past decades, accurate ET estimation is still a challenging task, especially for the Red River Valley of the North (RRV) that has limited updated information on ET either for landscape or agricultural water management. The overall objective of first study was to evaluate the ASCE-EWRI reference ET (ETo) method by developing an accurate crop coefficient (Kc) using an eddy covariance (EC) system over an unirrigated turfgrass site. The results showed that with mean ETgrass/ETo ratio as 0.96 for the entire growing seasons of turfgrass, the ASCE-EWRI ETo method is valid for guiding the turfgrass irrigation management in cold climate conditions. In a Controlled drainage with subirrigation (CD+SI) field, an EC system was used to measure and quantify energy flux components along with soil water content (SWC) and water table depth (WTD) measurements during four corn growing. This study showed that the subsurface drainage along with the CD + SI system can be used for optimal water management with an improvement of 26.7% and 6.6% of corn yield during wet and dry year, respectively. For the final task, ET was measured using EC, Bowen ratio system (BREB), and soil water balance (SWB) method during the corn growing season. The comparison of the EC and the BREB system illustrated the advantages of using the residual method to close the energy balance closure of EC. Among the different time approaches for SWB method, ET by the SWB method using the average soil water contents between 24:00 to 2:00 time period showed non-significant differences (alpha = 0.05) compared to the BREB system during the observation periods. / USDA National Institute of Food and Agriculture project / USDA NCR SARE project / ND Soybean Council / ND Water Resources Research Institute / ND Agricultural Experimental Station / USDA Hatch project / NASA ROSES Project

Page generated in 0.0494 seconds