• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nutrient Uptake Among Urban and Non-Urban Streams Within the Piedmont Physiographic Province of Virginia

Famularo, Joseph T 01 January 2019 (has links)
To assess how urbanization impacts stream nutrient uptake, a series of instantaneous (i.e. slug) nutrient additions were conducted in 3 urban and 3 non-urban streams during open and closed canopy conditions. Single additions of N, P, and combined additions of N and P were performed at each site. These data were used to test the hypothesis that high N:P concentrations in urban streams would result in P-limited conditions, and to assess differences in nutrient uptake kinetics (i.e., the relationship between uptake and concentration) between urban and non-urban streams. The results show that there were no consistent differences in N vs. P limitation among urban and non-urban streams suggesting that ambient N:P ratios are not useful predictors of nutrient limitation at the ecosystem scale. Areal uptake rates of N in urban streams were greater than non-urban streams coinciding with elevated N concentrations. Conversely, areal uptake rates of P were similar between urban and non-urban streams because these systems have similar ambient concentrations of P. Urban and non-urban streams demonstrated similar uptake velocity and areal uptake rate responses to increasing nutrient concentrations. However, unique to this study, urban streams had greater uptake velocities at ambient nutrient concentrations. These findings suggest that urban streams could have a greater capacity for nutrient uptake over a broad range of nutrient concentrations, but prior work indicates that this capacity may be constrained by the duration of the nutrient addition.
2

Comparing bioretention cell and green roof performance in Parma, OH

Sugano, Laura, Sugano 07 May 2018 (has links)
No description available.

Page generated in 0.0784 seconds