• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Urine Diversion & Reuse in Australia : A homeless paradigm or sustainable solution for the future?

Cordell, Dana January 2006 (has links)
<p>Diverting urine from faeces or mixed wastewater and reusing it to fertilize crops, is a traditional method used in Asia. It is also a contemporary approach to sustainable nutrient and water management in Scandinavia and other parts of Europe. Urine diversion and reuse is a proven socio-technical system that has significant potential benefits on both a local and global scale, such as recirculating scarce plant nutrients like phosphorus back to agriculture, reducing eutrophication of waterways and improving water and sanitation systems. This thesis explores the nature of these benefits in Australia and the global context and what barriers would need to be overcome if a urine diversion and reuse system were implemented in Australia to achieve significant environmental benefits. These questions are investigated through stakeholder interviews in Sweden, to identify the ‘lessons learnt’ from the Swedish experience with urine diversion and reuse, and, through interviews with relevant stakeholders in Australia to identify possible barriers and opportunities, costs and benefits, and roles and responsibilities in the Australian context. Findings from both the stakeholder interviews are triangulated with other sources of knowledge, such as the literature, personal communications and a qualitative assessment of costs and benefits.</p><p>This thesis found that while urine diversion is likely to benefit the Australia situation and warrants further research, these benefits are fragmented and spread across a range of discourses and separate institutions. Its acceptance and effective introduction into Australia might therefore be challenged by its lack of a single obvious organisational home. To overcome this and other identified challenges, several recommendations are made. For example, an Australian demonstration trial of urine diversion and reuse is recommended where clear drivers and opportunities exist, such as: in new developments adjacent to agricultural land; in regions where algal blooms are a critical problem and are predominantly caused by municipal sewage discharges; and where synergies with waterless urinals are being considered for water conservation value. This thesis does not promote urine diversion and reuse as the ‘silver bullet’ to Australia’s water and nutrient problems, however it does recommend that it be considered on an equal basis next to other possible options. For example, if reducing nutrient loads on receiving water bodies is a key objective, then a cost-effective analysis of urine diversion and reuse, compared to other options to reduce nutrient loads, could be undertaken, ensuring all relevant costs and benefits to the whole of society are included in the analysis.</p>
2

Urine Diversion &amp; Reuse in Australia : A homeless paradigm or sustainable solution for the future?

Cordell, Dana January 2006 (has links)
Diverting urine from faeces or mixed wastewater and reusing it to fertilize crops, is a traditional method used in Asia. It is also a contemporary approach to sustainable nutrient and water management in Scandinavia and other parts of Europe. Urine diversion and reuse is a proven socio-technical system that has significant potential benefits on both a local and global scale, such as recirculating scarce plant nutrients like phosphorus back to agriculture, reducing eutrophication of waterways and improving water and sanitation systems. This thesis explores the nature of these benefits in Australia and the global context and what barriers would need to be overcome if a urine diversion and reuse system were implemented in Australia to achieve significant environmental benefits. These questions are investigated through stakeholder interviews in Sweden, to identify the ‘lessons learnt’ from the Swedish experience with urine diversion and reuse, and, through interviews with relevant stakeholders in Australia to identify possible barriers and opportunities, costs and benefits, and roles and responsibilities in the Australian context. Findings from both the stakeholder interviews are triangulated with other sources of knowledge, such as the literature, personal communications and a qualitative assessment of costs and benefits. This thesis found that while urine diversion is likely to benefit the Australia situation and warrants further research, these benefits are fragmented and spread across a range of discourses and separate institutions. Its acceptance and effective introduction into Australia might therefore be challenged by its lack of a single obvious organisational home. To overcome this and other identified challenges, several recommendations are made. For example, an Australian demonstration trial of urine diversion and reuse is recommended where clear drivers and opportunities exist, such as: in new developments adjacent to agricultural land; in regions where algal blooms are a critical problem and are predominantly caused by municipal sewage discharges; and where synergies with waterless urinals are being considered for water conservation value. This thesis does not promote urine diversion and reuse as the ‘silver bullet’ to Australia’s water and nutrient problems, however it does recommend that it be considered on an equal basis next to other possible options. For example, if reducing nutrient loads on receiving water bodies is a key objective, then a cost-effective analysis of urine diversion and reuse, compared to other options to reduce nutrient loads, could be undertaken, ensuring all relevant costs and benefits to the whole of society are included in the analysis.

Page generated in 0.1083 seconds