• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Curious Poisoned Weed: Poison Ivy Ecology and Physiology

Dickinson, Christopher Cody 11 July 2019 (has links)
Poison ivy (Toxicodendron radicans (L.) Kuntze) is a native perennial liana widely recognized for the production of urushiol, and the associated contact dermatitis it causes in humans. Poison ivy is predicted to become both more prevalent and more noxious in response to projected patterns of global change. Moreover, poison ivy is an important food source for avian species, and urushiol has numerous applications as a high-value engineering material. Thus, this curious weed has many avenues for future concern, and promise. Here, I address gaps in knowledge about poison ivy ecology and physiology so that we may better understand its weediness and utilize its benefits. I address three core areas: poison ivy establishment patterns; biotic interactions with multiple taxa; and the development of molecular tools for use in poison ivy. I found that the early life stage of seedling emergence is a critical linchpin in poison ivy establishment due largely to herbivore pressure from large grazers. I also describe the multifaceted relationship between poison ivy and avian frugivores that not only disperse the drupes of poison ivy but also aid in reduction of fungal endophytic phytopathogens. A survey of poison ivy urushiols yielded that while variation in urushiol congeners was high across individuals, relative congener levels were stable within individuals over a two month period. Lastly I demonstrate best practices for introducing and transiently expressing recombinant DNA in poison ivy as a step towards future reverse genetic procedures. / Doctor of Philosophy / Poison ivy is a native plant best known for its capacity to cause allergenic skin reactions in humans due to the chemical urushiol, which is found in all parts of the plant. While most people prefer to avoid this plant, poison ivy is an important food source for birds. In addition, urushiol has numerous applications as an engineered material. Despite these positive aspects, poison ivy is among those plants that are responding well to global change, such as increasing CO₂ levels and habitat fragmentation. Poison ivy has been shown to increase in size and produce more allergenic forms of urushiol under elevated CO₂ levels and there are concerns that poison ivy prefers the disturbed areas created by habitat fragmentation. These attributes suggest that poison ivy will become more prevalent and more noxious in the coming years. Thus, this curious weed has many avenues for both future concern and promise. To aid in our ability to manage poison ivy in the future, I used a combination of field, greenhouse, and laboratory studies to study the ecology of poison ivy. I investigated the early stages of the poison ivy life cycle, and the relationship between poison ivy and the animals that interact with it. I found that the earliest life stages of poison ivy are a critical linchpin for poison ivy survival due largely to large animals like deer eating the seedlings. I also describe the multifaceted relationship between poison ivy and birds, which not only disperse the seeds of poison ivy but also aid in reducing pathogens associated with the seeds. I surveyed the amounts and types of urushiols that poison ivy produces and found them to be highly variable from plant to plant, but relatively stable over time within a plant. Lastly, I demonstrate best practices for transient transgene expression in poison ivy leaves as a step towards future genetic studies. These studies help expand our understanding of a problematic weed, and pave the way for future studies in weed ecology and in the utilization of urushiol in positive applications, showing that even poison ivy can be of benefit to the environment and humans.
2

RUBBER REINFORCEMENT WITH BIO-INSPIRED ANALOGUES

YAN, XUESONG January 2018 (has links)
No description available.
3

Investigations into the molecular evolution of plant terpene, alkaloid, and urushiol biosynthetic enzymes

Weisberg, Alexandra Jamie 09 July 2014 (has links)
Plants produce a vast number of low-molecular-weight chemicals (so called secondary or specialized metabolites) that confer a selective advantage to the plant, such as defense against herbivory or protection from changing environmental conditions. Many of these specialized metabolites are used for their medicinal properties, as lead compounds in drug discovery, or to impart our food with different tastes and scents. These chemicals are produced by various pathways of enzyme-mediated reactions in plant cells. It is suspected that enzymes in plant specialized metabolism evolved from those in primary metabolism. Understanding how plants evolved to produce these diverse metabolites is of primary interest, as it can lead to the engineering of plants to be more resistant to both biotic and abiotic stress, or to produce more complex small molecule compounds that are difficult to derive. To that end, the first objective was to develop a schema for rational protein engineering using meta-analyses of a well-characterized sesquiterpene synthase family encoding two closely-related but different types of enzymes, using quantitative measures of natural selection on amino-acid positions previously demonstrated as important for neofunctionalization between two terpene synthase gene families. The change in the nonsynonymous to synonymous mutation rate ratio (dN/dS) between these two gene families was large at the sites known to be responsible for interconversion. This led to a metric (delta dN/dS) that might have some predictive power. This natural selection-oriented approach was tested on two related enzyme families involved in either nicotine/tropane alkaloid biosynthesis (putrescine N-methyltransferase) or primary metabolism (spermidine synthase) by attempting to interconvert a spermidine synthase to encode putrescine N-methyltransferase activity based upon past patterns of natural selection. In contrast to the HPS/TEAS system, using delta dN/dS metrics between SPDS and PMT and site directed mutagenesis of SPDS did not result in the desired neofunctionalization to PMT activity. Phylogenetic analyses were performed to investigate the molecular evolution of plant N-methyltransferases involved in three alkaloid biosynthetic pathways. The results from these studies indicated that unlike O-MTs that show monophyletic origins, plant N-MTs showed patterns indicating polyphyletic origins. To provide the foundation for future molecular-oriented studies of urushiol production in poison ivy, the complete poison ivy root and leaf transcriptomes were sequenced, assembled, and analyzed. / Ph. D.

Page generated in 0.0428 seconds