Spelling suggestions: "subject:"usable leftovers""
1 |
Problemas de corte com sobras aproveitáveis e eliminação de simetrias / Cutting stock problems with usable leftover and symmetry breakingAbrantes, Ricardo Luiz de Andrade 20 September 2012 (has links)
No presente trabalho estudamos duas variações do problema de empacotamento de itens retangulares idênticos, permitindo rotações de 90 graus, em um poliedro. Uma variação consiste em encontrar a maior quantidade de itens retangulares idênticos que podem ser empacotados em um poliedro. A outra consiste em encontrar o poliedro de um determinado tipo com menor área para empacotar uma quantidade fixa de itens retangulares idênticos. Desenvolvemos restrições de eliminação de simetrias para estes problemas, o que tornou a resolução dos mesmos mais eficiente, por métodos do tipo branch-&-bound. Estudamos também o problema de corte no qual há uma determinada demanda (de itens) a ser cortada e um conjunto de objetos disponíveis. Desejamos satisfazer a demanda minimizando o custo dos objetos utilizados e, dentre as diferentes possibilidades de se fazer isso, desejamos aquela que maximize as sobras aproveitáveis. De forma geral, sobras aproveitáveis podem ser entendidas como regiões retangulares de um objeto que possuem altura e largura iguais ou superiores a de um item de referência e representam sobras do processo de corte que podem se tornar objetos e serem reaproveitadas em um novo procedimento de corte. Apresentamos modelos de otimização em dois níveis para duas variações do problema de corte com sobras aproveitáveis a saber: o problema de corte de itens retangulares em dois estágios e o problema de corte de itens retangulares não guilhotinado. Como formas de resolver os modelos propostos, apresentamos reformulações destes modelos de programação em dois níveis em modelos de programação inteira mista. Lidamos também com uma variação do problema de corte com sobras aproveitáveis considerando a minimização da quantidade de sobras. Aplicamos restrições de eliminação de simetrias aos modelos desenvolvidos para o problema de corte de itens retangulares com sobras aproveitáveis, a fim de resolver instâncias maiores, e desenvolvemos uma estratégia de solução alternativa para os modelos. Os modelos desenvolvidos foram implementados computacionalmente e fomos capazes de resolver instâncias pequenas dos problemas em questão. / In this work we study two variations of the packing problem where identical rectangular items must be packed into a polyhedron. One of the variations consists in finding the largest amount of rectangular items that can fit in a polyhedron. The other one consists in finding a minimal area polyhedron of a certain type that packs a set of rectangular identical items. We present some symmetry-breaking constraints that reduce the computational effort in solving those problems through a branch-&-bound method. We also studied the cutting stock problem where there are some items to be cut from a set of rectangular objects and we need to satisfy the demand of items to be cut minimizing the cost of the used objects and, among the different ways of doing this, we want that which maximize the usable leftovers. Loosely speaking,usable leftovers can be understood as rectangular regions in an object that has the width and the height greater than or equal to the ones of a reference item. These leftovers can be seen as leftovers from a cutting process that will become items in a new cutting process. We present bilevel programming models to two variations of this problem with usable leftovers: the two-stage cutting stock problem of rectangular items and the non-guillotine cutting stock problem of rectangular items. In order to solve the proposed models we present also MIP reformulations of these bilevel programming problem models. We also developed some symmetry breaking constraints in order to accelerate the solving process of those models. The developed models were computationally programmed and we were able to solve small instances of the proposed problems
|
2 |
Problemas de corte com sobras aproveitáveis e eliminação de simetrias / Cutting stock problems with usable leftover and symmetry breakingRicardo Luiz de Andrade Abrantes 20 September 2012 (has links)
No presente trabalho estudamos duas variações do problema de empacotamento de itens retangulares idênticos, permitindo rotações de 90 graus, em um poliedro. Uma variação consiste em encontrar a maior quantidade de itens retangulares idênticos que podem ser empacotados em um poliedro. A outra consiste em encontrar o poliedro de um determinado tipo com menor área para empacotar uma quantidade fixa de itens retangulares idênticos. Desenvolvemos restrições de eliminação de simetrias para estes problemas, o que tornou a resolução dos mesmos mais eficiente, por métodos do tipo branch-&-bound. Estudamos também o problema de corte no qual há uma determinada demanda (de itens) a ser cortada e um conjunto de objetos disponíveis. Desejamos satisfazer a demanda minimizando o custo dos objetos utilizados e, dentre as diferentes possibilidades de se fazer isso, desejamos aquela que maximize as sobras aproveitáveis. De forma geral, sobras aproveitáveis podem ser entendidas como regiões retangulares de um objeto que possuem altura e largura iguais ou superiores a de um item de referência e representam sobras do processo de corte que podem se tornar objetos e serem reaproveitadas em um novo procedimento de corte. Apresentamos modelos de otimização em dois níveis para duas variações do problema de corte com sobras aproveitáveis a saber: o problema de corte de itens retangulares em dois estágios e o problema de corte de itens retangulares não guilhotinado. Como formas de resolver os modelos propostos, apresentamos reformulações destes modelos de programação em dois níveis em modelos de programação inteira mista. Lidamos também com uma variação do problema de corte com sobras aproveitáveis considerando a minimização da quantidade de sobras. Aplicamos restrições de eliminação de simetrias aos modelos desenvolvidos para o problema de corte de itens retangulares com sobras aproveitáveis, a fim de resolver instâncias maiores, e desenvolvemos uma estratégia de solução alternativa para os modelos. Os modelos desenvolvidos foram implementados computacionalmente e fomos capazes de resolver instâncias pequenas dos problemas em questão. / In this work we study two variations of the packing problem where identical rectangular items must be packed into a polyhedron. One of the variations consists in finding the largest amount of rectangular items that can fit in a polyhedron. The other one consists in finding a minimal area polyhedron of a certain type that packs a set of rectangular identical items. We present some symmetry-breaking constraints that reduce the computational effort in solving those problems through a branch-&-bound method. We also studied the cutting stock problem where there are some items to be cut from a set of rectangular objects and we need to satisfy the demand of items to be cut minimizing the cost of the used objects and, among the different ways of doing this, we want that which maximize the usable leftovers. Loosely speaking,usable leftovers can be understood as rectangular regions in an object that has the width and the height greater than or equal to the ones of a reference item. These leftovers can be seen as leftovers from a cutting process that will become items in a new cutting process. We present bilevel programming models to two variations of this problem with usable leftovers: the two-stage cutting stock problem of rectangular items and the non-guillotine cutting stock problem of rectangular items. In order to solve the proposed models we present also MIP reformulations of these bilevel programming problem models. We also developed some symmetry breaking constraints in order to accelerate the solving process of those models. The developed models were computationally programmed and we were able to solve small instances of the proposed problems
|
3 |
O problema de corte não-guilhotinado multiperíodo com sobras aproveitáveis / Multi-period non-guillotine cutting problem with usable leftoverRomão, Oberlan Christo 18 October 2017 (has links)
Neste trabalho, estudamos o problema de corte bidimensional multiperíodo com sobras aproveitáveis, que consiste em cortar objetos grandes visando a produção de um conjunto de itens menores. Supomos um horizonte de planejamento finito com uma quantidade finita de períodos entre os tempos inicial e final. Primeiramente consideramos uma versão determinística em que conhecemos, à priori, os itens solicitados em uma ordem de trabalho e o custo dos objetos a cada período. Algumas das sobras geradas durante o processo de corte dos itens solicitados em um período podem ser utilizadas como objetos no futuro. As sobras que podem ser usadas no futuro são denominadas sobras aproveitáveis. De forma geral, uma sobra é considerada aproveitável se possui dimensões iguais ou superiores as de algum item de uma lista pré-definida para o período. O objetivo é minimizar o custo total dos objetos utilizados para satisfazer a ordem de trabalho dos itens solicitados de todo o horizonte considerado. Havendo soluções com o mesmo custo, desejamos encontrar aquela que, no fim do horizonte de tempo considerado, maximize o valor das sobras aproveitáveis remanescentes. Apresentamos uma modelagem matemática do problema usando uma formulação em dois níveis, que é transformada em um modelo de programação linear inteira mista, devido às características do problema. Considerando a dificuldade em resolver o modelo desenvolvido, apresentamos uma proposta de uma abordagem heurística baseada em Programação Dinâmica Aproximada (PDA) para lidar com o problema proposto. Outras opções baseadas em estratégias do tipo horizonte rolante e relax-and-fix também são consideradas. Consideramos também o cenário onde não conhecemos de antemão os itens da ordem de trabalho e o custo dos objetos, mas temos informações das distribuições de probabilidade de ambos. Nesse caso, apresentamos uma abordagem baseada em programação dinâmica aproximada para estimar a melhor estratégia a ser seguida em cada período. Comparamos os resultados obtidos pela PDA com os resultados encontrados por um método guloso. Em cenários adequados, os resultados mostram que a PDA consegue soluções superiores ao método guloso. / In this research, we study the multi-period two-dimensional cutting problem with usable leftover, which consists of cutting objects to produce a set of items. We assume a finite planning horizon with a finite amount of periods between the initial and final times. First we consider a deterministic version in which we know, a priori, the set of ordered items and the cost of the objects at each period. Some of the leftovers generated during the cutting process of the ordered items in a period may be used as objects in the future. The leftovers that can be used in the future are called usable leftovers. In general, a leftover is considered usable if it has dimensions equal to or greater than that of some item from a predefined list for the period. The goal is to minimize the total cost of the objects used to cut the set of ordered items of the entire considered horizon. If there are solutions with the same cost, we wish to find one that, at the end of the considered time horizon, maximizes the value of the remaining usable leftovers. We present a mathematical model of the problem using a bilevel formulation, which is transformed into a mixed integer linear programming model, due to the characteristics of the problem. Considering the difficulty in solving the developed model, we propose a heuristic approach based on approximate dynamic programming (ADP) to deal with the proposed problem. Other options based on the rolling horizon and relax-and-fix strategies are also considered. We also consider the scenario where we do not know in advance the set of ordered items and the cost of the objects, but we have information about the probability distributions of both. In this case, we present an approach based on approximate dynamic programming to estimate the best strategy to be followed at each period. We compared the results obtained by the ADP with the results found by a greedy method. In suitable scenarios, the results show that the ADP achieves superior solutions to the greedy method.
|
4 |
O problema de corte não-guilhotinado multiperíodo com sobras aproveitáveis / Multi-period non-guillotine cutting problem with usable leftoverOberlan Christo Romão 18 October 2017 (has links)
Neste trabalho, estudamos o problema de corte bidimensional multiperíodo com sobras aproveitáveis, que consiste em cortar objetos grandes visando a produção de um conjunto de itens menores. Supomos um horizonte de planejamento finito com uma quantidade finita de períodos entre os tempos inicial e final. Primeiramente consideramos uma versão determinística em que conhecemos, à priori, os itens solicitados em uma ordem de trabalho e o custo dos objetos a cada período. Algumas das sobras geradas durante o processo de corte dos itens solicitados em um período podem ser utilizadas como objetos no futuro. As sobras que podem ser usadas no futuro são denominadas sobras aproveitáveis. De forma geral, uma sobra é considerada aproveitável se possui dimensões iguais ou superiores as de algum item de uma lista pré-definida para o período. O objetivo é minimizar o custo total dos objetos utilizados para satisfazer a ordem de trabalho dos itens solicitados de todo o horizonte considerado. Havendo soluções com o mesmo custo, desejamos encontrar aquela que, no fim do horizonte de tempo considerado, maximize o valor das sobras aproveitáveis remanescentes. Apresentamos uma modelagem matemática do problema usando uma formulação em dois níveis, que é transformada em um modelo de programação linear inteira mista, devido às características do problema. Considerando a dificuldade em resolver o modelo desenvolvido, apresentamos uma proposta de uma abordagem heurística baseada em Programação Dinâmica Aproximada (PDA) para lidar com o problema proposto. Outras opções baseadas em estratégias do tipo horizonte rolante e relax-and-fix também são consideradas. Consideramos também o cenário onde não conhecemos de antemão os itens da ordem de trabalho e o custo dos objetos, mas temos informações das distribuições de probabilidade de ambos. Nesse caso, apresentamos uma abordagem baseada em programação dinâmica aproximada para estimar a melhor estratégia a ser seguida em cada período. Comparamos os resultados obtidos pela PDA com os resultados encontrados por um método guloso. Em cenários adequados, os resultados mostram que a PDA consegue soluções superiores ao método guloso. / In this research, we study the multi-period two-dimensional cutting problem with usable leftover, which consists of cutting objects to produce a set of items. We assume a finite planning horizon with a finite amount of periods between the initial and final times. First we consider a deterministic version in which we know, a priori, the set of ordered items and the cost of the objects at each period. Some of the leftovers generated during the cutting process of the ordered items in a period may be used as objects in the future. The leftovers that can be used in the future are called usable leftovers. In general, a leftover is considered usable if it has dimensions equal to or greater than that of some item from a predefined list for the period. The goal is to minimize the total cost of the objects used to cut the set of ordered items of the entire considered horizon. If there are solutions with the same cost, we wish to find one that, at the end of the considered time horizon, maximizes the value of the remaining usable leftovers. We present a mathematical model of the problem using a bilevel formulation, which is transformed into a mixed integer linear programming model, due to the characteristics of the problem. Considering the difficulty in solving the developed model, we propose a heuristic approach based on approximate dynamic programming (ADP) to deal with the proposed problem. Other options based on the rolling horizon and relax-and-fix strategies are also considered. We also consider the scenario where we do not know in advance the set of ordered items and the cost of the objects, but we have information about the probability distributions of both. In this case, we present an approach based on approximate dynamic programming to estimate the best strategy to be followed at each period. We compared the results obtained by the ADP with the results found by a greedy method. In suitable scenarios, the results show that the ADP achieves superior solutions to the greedy method.
|
Page generated in 0.0569 seconds