• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The User Attribution Problem and the Challenge of Persistent Surveillance of User Activity in Complex Networks

Taglienti, Claudio 01 January 2014 (has links)
In the context of telecommunication networks, the user attribution problem refers to the challenge faced in recognizing communication traffic as belonging to a given user when information needed to identify the user is missing. This is analogous to trying to recognize a nameless face in a crowd. This problem worsens as users move across many mobile networks (complex networks) owned and operated by different providers. The traditional approach of using the source IP address, which indicates where a packet comes from, does not work when used to identify mobile users. Recent efforts to address this problem by exclusively relying on web browsing behavior to identify users were limited to a small number of users (28 and 100 users). This was due to the inability of solutions to link up multiple user sessions together when they rely exclusively on the web sites visited by the user. This study has tackled this problem by utilizing behavior based identification while accounting for time and the sequential order of web visits by a user. Hierarchical Temporal Memories (HTM) were used to classify historical navigational patterns for different users. Each layer of an HTM contains variable order Markov chains of connected nodes which represent clusters of web sites visited in time order by the user (user sessions). HTM layers enable inference "generalization" by linking Markov chains within and across layers and thus allow matching longer sequences of visited web sites (multiple user sessions). This approach enables linking multiple user sessions together without the need for a tracking identifier such as the source IP address. Results are promising. HTMs can provide high levels of accuracy using synthetic data with 99% recall accuracy for up to 500 users and good levels of recall accuracy of 95 % and 87% for 5 and 10 users respectively when using cellular network data. This research confirmed that the presence of long tail web sites (rarely visited) among many repeated destinations can create unique differentiation. What was not anticipated prior to this research was the very high degree of repetitiveness of some web destinations found in real network data.
2

USER ATTRIBUTION IN DIGITAL FORENSICS THROUGH MODELING KEYSTROKE AND MOUSE USAGE DATA USING XGBOOST

Shruti Gupta (12112488) 20 April 2022 (has links)
<p>The increase in the use of digital devices, has vastly increased the amount of data used and consequently, has increased the availability and relevance of digital evidence. Typically, digital evidence helps to establish the identity of an offender by identifying the username or the user account logged into the device at the time of offense. Investigating officers need to establish the link between that user and an actual person. This is difficult in the case of computers that are shared or compromised. Also, the increasing amount of data in digital investigations necessitates the use of advanced data analysis approaches like machine learning, while keeping pace with the constantly evolving techniques. It also requires reporting on known error rates for these advanced techniques. There have been several research studies exploring the use of behavioral biometrics to support this user attribution in digital forensics. However, the use of the state-of-the-art XGBoost algorithm, hasn’t been explored yet. This study builds on previously conducted research by modeling user interaction using the XGBoost algorithm, based on features related to keystroke and mouse usage, and verifying the performance for user attribution. With an F1 score and Area Under the Receiver Operating Curve (AUROC) of .95, the algorithm successfully attributes the user event to the right user. The XGBoost model also outperforms other classifiers based on algorithms such as Support Vector Machines (SVM), Boosted SVM and Random Forest.</p>

Page generated in 0.0922 seconds