• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancing User Search Experience in Digital Libraries with Rotated Latent Semantic Indexing

Polyakov, Serhiy 08 1900 (has links)
This study investigates a semi-automatic method for creation of topical labels representing the topical concepts in information objects. The method is called rotated latent semantic indexing (rLSI). rLSI has found application in text mining but has not been used for topical labels generation in digital libraries (DLs). The present study proposes a theoretical model and an evaluation framework which are based on the LSA theory of meaning and investigates rLSI in a DL environment. The proposed evaluation framework for rLSI topical labels is focused on human-information search behavior and satisfaction measures. The experimental systems that utilize those topical labels were built for the purposes of evaluating user satisfaction with the search process. A new instrument was developed for this study and the experiment showed high reliability of the measurement scales and confirmed the construct validity. Data was collected through the information search tasks performed by 122 participants using two experimental systems. A quantitative method of analysis, partial least squares structural equation modeling (PLS-SEM), was used to test a set of research hypotheses and to answer research questions. The results showed a not significant, indirect effect of topical label type on both guidance and satisfaction. The conclusion of the study is that topical labels generated using rLSI provide the same levels of alignment, guidance, and satisfaction with the search process as topical labels created by the professional indexers using best practices.

Page generated in 0.0849 seconds