• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation et commande de processus par réseaux de neurones ; application au pilotage d'un véhicule autonome

Rivals, Isabelle 20 January 1995 (has links) (PDF)
Les réseaux de neurones formels permettent de construire, par apprentissage statistique, une vaste famille de modèles et de correcteurs non linéaires. L'objet de cette thèse est la définition des modalités de mise en œuvre de réseaux de neurones et l'évaluation de leur apport pour la modélisation et la commande non adaptatives de processus dynamiques non linéaires. Sur le plan théorique, nous présentons la modélisation et la commande de processus par réseaux de neurones dans un cadre aussi général que possible, en les plaçant dans la perspective de l'Automatique classique. En modélisation, les résultats concernant les systèmes linéaires nous aident à formuler les prédicteurs non linéaires optimaux théoriques correspondant à diverses hypothèses sur le bruit intervenant dans le processus à modéliser ; une méthodologie d'apprentissage associée fournit des prédicteurs neuronaux qui sont des réalisations des prédicteurs théoriques. Nous proposons ensuite une famille de systèmes de commande neuronaux, dont nous étudions les propriétés et les liens avec les systèmes de commande classique, linéaire ou non, en insistant notamment sur la robustesse ; ceci nous conduit à développer la commande avec modèle interne neuronale. Sur le plan pratique, nous illustrons notre démarche et nos résultats par une application industrielle, le pilotage d'un véhicule autonome tout-terrain, dont le volant, l'accélérateur et le frein sont commandés par des réseaux neuronaux.

Page generated in 0.1187 seconds