• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, production, and validation of a vacuum arc thruster for in-orbit proximity operations

Hiemstra, Cornelis Peter January 2022 (has links)
Vacuum arc thrusters offer a relatively simple and cheap form of satellite propulsion, especially suitable for nanosatellites such as CubeSats or even smaller. This thesis focuses on vacuum arc thruster design considering the thruster’s manufacturing, assembly and integration into the spacecraft, and proposes a new anode geometry easing thruster production. Vacuum arc thruster research is traditionally experimental in nature due to a lack of accurate models. This work follows this approach, and studies experimentally the effect of several geometric design parameters on thruster performance. The outcome confrms findings from several papers, and suggests specifc improvements towards existing models for predicting the effect of the thruster’s geometry on its thrust. The chosen experimental approach raised the need for a micro-thrust measurement stand. Two distinct measurement stands have been designed, realized and used to test various thruster prototypes. One test stand is more accurate. However, the other setup allows for considerably faster testing.
2

Development of a vacuum arc thruster for nanosatellite propulsion

Lun, Jonathan 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2009. / This thesis describes the development of a vacuum arc thruster (VAT) to be used as a potential low mass (< 500 g), low power (< 5–10W) propulsion system for nanosatellites. The thruster uses a high voltage capacitive circuit to initiate and power the arc process with a 400 ns high current (150–800A) pulse. A one-dimensional steady state analyticalmodel describing the cathode region of the vacuum arc was developed. The model made use of mass and energy balances at the sheath region and cathode surface respectively to predict key quantities such as thrust, ion velocity, ion-to-arc current ratio and erosion rate. Predicted results were shown to be within the limits of reported literature (∼63 μN/A, 26.12 km/s, 0.077 and 110 μg/C respectively). A sensitivity analysis of the analytical model found that a high electric field in the cathode region impedes and decelerates ion flow, which is used for thrust. This was confirmed experimentally for thrust values at arc voltages greater than 2000 V. Both direct and indirect means of measuring thrust were achieved by using a deflecting cantilever beam and an ion collector system, respectively. The transient response of the cantilever beam to impulsive thrust was analytically modeled, whilst the ion current was found by measuring the current induced on a plate subject to ion bombardment. Knowledge of the ion current density distribution was successfully used to approximate the effective normal thrust vector. Direct and indirect thrust levels were roughly 140 and 82 μN/A of average arc current, respectively. Measured thrust was found to be higher than predicted thrust due to thrust contributions fromthe ablation of Teflon insulation. The discrepancy is also due to the uncertainty in quantifying free parameters in the analytical model such as the fraction of generated ions flowing away from the cathode region. The thrust-topower ratio, specific impulse and efficiency of the vacuum arc thruster at an average arc current of 200 A was measured to be 0.6 μN/W, 160 s and 0.05 %, respectively. A thruster performance analysis and specification showed that the VAT is capable of achieving specific orbital and slew manoeuvres within a constant 5–10 W average power. It was concluded that thruster performance could be improved by using a two-stage arc circuit consisting of a high voltage, low current, short pulse trigger and a low voltage, high current, long pulse driver.
3

Concept investigation into Metal Plasma Source for High Powered Space Applications

Borg, Ludvig January 2023 (has links)
This thesis explores the potential of utilizing metal-based plasma sources as a sustainable solution for high-powered electric propulsion and its implications for future interplanetary travel. Focusing on the Vacuum Arc Thruster and the Variable Specific Impulse Magnetoplasma Rocket engine, the study encompasses numerical simulations, analytical comparisons, and performance analyses to assess the feasibility of metal plasma fuels in space missions.The numerical analysis employs COMSOL Multiphysics to delve into the magnetohydrodynamics behavior within the VAT. Such simulation setup could provide valuable insights. Although the numerical results are disappointing for this paper, there exist possibilities within future work. The main hurdle is the simulation of vacuum. There are workarounds in COMSOL's Vacuum System Modeling tool which was not available for this thesis. Also, the used material properties were not suited for this high temperature plasma environment. The lack of material properties is a consequence of the insufficient research in the metal plasma field.Performance analysis is conducted on both the VAT and VASIMR engine, exploring efficiency, thrust capabilities, and feasibility for interplanetary missions. The results demonstrate the potential of metal-based plasma sources to reduce dependence on Earth for refueling and decrease mission costs. It is found that aluminum and magnesium have similar performance as the argon gas used in the VASIMR.Although challenges exist, such as integration problems and availability of material properties for metals in plasma states, the study underscores the promise of metal plasma fuels for sustainable space exploration. By advancing high-powered electric propulsion technologies, we move closer to realizing humanity's ambitious journey to distant celestial bodies. This research paves the way for future innovations, enabling a more self-sustaining space economy and unlocking new horizons of interplanetary travel.

Page generated in 0.102 seconds