• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of pneumatic vacuum generators – heading for energy-efficient handling processes

Kuolt, Harald, Gauß, Jan, Schaaf, Walter, Winter, Albrecht 03 May 2016 (has links) (PDF)
In current production systems, automation and handling of workpieces is often solved by use of vacuum technology. Most production systems use vacuum ejectors which generate vacuum from compressed air by means of the Venturi effect. However, producing vacuum with compressed air is significantly less efficient than using other principles. To minimize the energy costs of pneumatic vacuum generation or to make full use of the energy available, it is important that the inner contour of the nozzle is shaped precisely to suit the specific application - also the system\'s flow conduction needs to be optimal and the flow losses have to be minimized. This paper presents a method for optimally designing pneumatic vacuum generators and producing them economically even at very low lot sizes in order to keep the operation costs low and address other concerns (such as noise emissions) as well.
2

Optimization of pneumatic vacuum generators – heading for energy-efficient handling processes

Kuolt, Harald, Gauß, Jan, Schaaf, Walter, Winter, Albrecht January 2016 (has links)
In current production systems, automation and handling of workpieces is often solved by use of vacuum technology. Most production systems use vacuum ejectors which generate vacuum from compressed air by means of the Venturi effect. However, producing vacuum with compressed air is significantly less efficient than using other principles. To minimize the energy costs of pneumatic vacuum generation or to make full use of the energy available, it is important that the inner contour of the nozzle is shaped precisely to suit the specific application - also the system\'s flow conduction needs to be optimal and the flow losses have to be minimized. This paper presents a method for optimally designing pneumatic vacuum generators and producing them economically even at very low lot sizes in order to keep the operation costs low and address other concerns (such as noise emissions) as well.

Page generated in 0.3828 seconds