1 |
Remediation of Mine Tailings by Nano-Scale Zero-Valent IronSnyder, James E. 02 September 2011 (has links)
The purpose of this thesis was to investigate the potential ability of nano-scale zerovalent
iron (nZVI) to remediate multiple metal contaminants, specifically in the context of mine
tailings. The project began by adopting techniques reported on by investigators researching the
remediation effectiveness on metal contaminants of nZVI within the framework of civil
engineering applications, such as groundwater treatment (Karabelli et al, 2008). This phase of the
project saw the treatment of laboratory prepared samples of copper contaminated waters (at 10,
30, 50 and 100 ppm) by the addition of unstabilized nZVI. Results showed that all but the 100
ppm samples were effectively cleared of nearly all metal contamination following treatment
additions of 1 mL nZVI to 50 mL of sample water. The second phase of the project sought to
expand on this success by subjecting laboratory prepared water samples containing multiple metal
contaminants to the same dose on nZVI. A collection of metal contaminants, known as the Arctic
Suite, containing arsenic, cadmium, cobalt, chromium, nickel, lead and zinc, was made up as
contaminated waters (at 1, 3, 5, and 10 ppm concentrations) and was tested for nZVI remediation.
Results showed that only the 10 ppm samples were not effectively remediated and furthermore
showed preferential treatment of arsenic, chromium and lead instead of an even distribution of
treatment amongst all metal contaminants present. The final phase of the project saw the testing
of contaminated waters produced from five mine tailings, acquired from separate sources, by the
same dose of nZVI as in the first two phases of the project. Results showed that where
contaminant metals were present some remediation effect did occur. However, an inability to
produce highly contaminated leachates from the mine tailings meant that no trends in nZVI
remediation effectiveness could be determined with any certainty. / Thesis (Master, Mining Engineering) -- Queen's University, 2011-09-01 11:04:28.869
|
2 |
Aspects of Zero-Valent Nickel, Palladium and Platinum ChemistryMacDonald, Robert Richard 11 1900 (has links)
<p> The work describes the preparation and properties of some novel dibenzylideneacetone complexes of palladium and platinum. The structure and bonding in these complexes is discussed in view of their infrared and nuclear magnetic resonance spectra. The cyclotrimerization of acetylenes by zero-valent nickel complexes is discussed and the synthesis of a new cyclobutadiene-platinum complex is reported.</p> / Thesis / Master of Science (MSc)
|
3 |
Novel Simultaneous Reduction/Oxidation Process for Destroying Organic SolventsPadmanabhan, Anita Rema 29 April 2008 (has links)
Trichloroethylene (TCE) is one of the most common groundwater pollutants in the United States and is a suspected carcinogen. The United States Environmental Protection Agency (EPA) estimated that between 9% and 34% of the drinking water sources in the United States may contain TCE, and have set a maximum contaminant level of 5 ìg/L for drinking water. Traditional treatment technologies such as granular activated carbon and air stripping have only had marginal success at removing TCE from contaminated sites. Chemical oxidation processes have provided a promising alternative to traditional treatment methods. The objective of this research was to examine the conditions under which zero valent iron (Fe0) activates persulfate anions to produce sulfate free radicals, a powerful oxidant used for destroying organic contaminants in water. With batch experiments, it was found that persulfate activated by zero valent iron removed TCE more effectively than persulfate oxidation activated by ferrous iron. This laboratory study also investigated the influence of pH (from 2 to 10) on TCE removal. TCE was prepared in purified water and a fixed persulfate/TCE molar ratio was employed in all tests. The results indicated that this reaction occurred over a wide range of pH values. The production and destruction of daughter products cis 1,2 dichloroethylene and vinyl chloride were observed. The effect of persulfate dose on this reaction was also studied. Results showed that a molar ratio of 10/1/1 (persulfate/ZVI/TCE) yielded over 95 percent TCE destruction. Increasing the persulfate dose resulted in greater TCE destruction as well as destruction of the daughter products. Kinetic experiments at a molar ratio of 10/1/1 (persulfate/ZVI/TCE) show that approximately 90 percent of the TCE was destroyed in less than 15 minutes.
|
4 |
Synthesis and reactivity of phosphorus-boron multiple bondsPrice, Amy Nicole January 2018 (has links)
Phosphorus-boron multiple-bonds are of interest because of their predicted reactivity with small molecules; their potential as reagents for the synthesis of molecules isosteric to carbon analogues which exhibit conjugation; and because they have potential as nucleation sites for the solution-phase synthesis of boron phosphide. Phosphaborenes (RP=BR') have not yet been reported due to their propensity to oligomerise to dimers or trimers, even with bulky and electronically-stabilising substituents upon phosphorus and boron. Base-stabilisation at boron allows the isolation of phosphaborenes by preventing oligomerisation, although this alters the reactivity of the phosphaborene unit. An alternative method of studying phosphaborenes free of base or acid coordination is via their thermal generation from a phosphaborene dimer and subsequent in situ reactions with suitable substrates. Chapter 1 examines the potential uses of phosphaborenes in the context of other low-valent main group molecules. The likely reactivity of phosphorus-boron multiple bonds is discussed in the context of the iminoboranes (RNBR') and the isoelectronic heavier group 14 alkyne and alkene analogues. The use of unsaturated main group fragments to build molecular clusters is considered along with the potential role that phosphorus boron multiple bonds could play in preparing boron phosphide fragments. The uses and methods of preparation of group 13/15 containing molecules exhibiting conjugation are discussed, along with the possibility that phosphaborenes would be useful reagents to prepare new P-B/C-C isosteres. Chapter 2 looks at how base-promoted trimethylsilylchloride elimination can be used to prepare base-stabilised phosphaborenes from suitable precursors (RP(SiMe₃)B(X)R' and the mechanism of these reactions. The reactivity of base-stabilised phosphaborenes with Lewis acids is also examined. Chapter 3 covers how base-promoted (L = base) trimethylsilyl halide abstraction from functionalised precursors ((Me₃Si)₃P·BBr₃) can be harnessed to prepare new functionalised phosphinoboranes ((Me₃Si)₂PB(L)Br₂) and phosphaborenes (Me₃SiP=B(L)Br). A 1-dihydro-2-dibromo functionalised phosphinoborane H₂PB(Br₂)L can be prepared from Me₃Si)₂PB(Br₂)L. A subsequent base-promoted dehydrohalogenation yields the hydro-bromo substituted phosphaborene HP=B(L)Br. Chapter 4 examines the in situ thermal generation of a phosphaborene generated from a phosphaborene dimer and its reactivity with bases and unsaturated organic molecules to prepare 1,2-phosphaboretes and 1,2-phosphaboretanes. Chapter 5 explores the diverse reactivity of the 1,2-phosphaboretes. 1,2- phosphaboretes are capable of FLP-like insertion reactions with an isonitrile and carbon monoxide. They are also ring-opened by the coordination of a Lewis acid or base to phosphorus or boron respectively to give P-B containing butadiene analogues. The reaction of the 1,2-phosphaborete with phenyl acetylene proceeds via an unusual carbon-carbon bond cleavage to generate the first example of a 1,3- phosphaborine benzene analogue, rather than the expected 1,4-phosphaborine.
|
5 |
High-Valent Perfluoronickelacycles: Intermediates for “Green” Routes to Fluorocarbons and Their DerivativesHunter, Nicole Marie 26 May 2011 (has links)
Fluorocarbons (FCs) and their derivatives (FCDs) are heavily relied on due to their wide range of uses (e.g. solvents, surfactants, refrigerants, and pharmaceuticals). Currently, FCs and FCDs are produced on an industrial scale via energy-intensive processes, using hazardous materials. Hence, new catalytic chemical technologies are required to provide cleaner and greener synthetic routes to partially fluorinated materials. The exploration of fundamental organofluorometallic chemistry of base metals, such as nickel, has potential to advance the development of novel catalytic processes towards this end. It has been established previously that zero-valent nickel complexes have the ability to efficiently catalyze the hydrodimerization of polyfluoroalkenes. The reactivity of the intermediate polyfluoronickelacycles was found to be influenced by modifications in the ligand sphere. Furthermore, an increase in oxidation state of the central metal atom was proposed as an additional strategy to increase the reactivity of the M-RF bond. In this thesis, through variation of the ligand environment and oxidation state of nickel, we have further developed the chemistry of high-valent polyfluoronickelacycles. Synthesis and characterization (NMR, EPR, UV/Vis, IR spectroscopy and electrochemistry) of new trivalent polyfluoronickelacycles are described as well as attempts to generate the corresponding tetravalent cations. Attempts to induce nucleophilic insertion of acetonitrile into the Ni-RF bond were also investigated herein. Challenges were encountered with the isolation of the tetravalent cations due to decomposition to the corresponding divalent nickelacycle.
|
6 |
High-Valent Perfluoronickelacycles: Intermediates for “Green” Routes to Fluorocarbons and Their DerivativesHunter, Nicole Marie 26 May 2011 (has links)
Fluorocarbons (FCs) and their derivatives (FCDs) are heavily relied on due to their wide range of uses (e.g. solvents, surfactants, refrigerants, and pharmaceuticals). Currently, FCs and FCDs are produced on an industrial scale via energy-intensive processes, using hazardous materials. Hence, new catalytic chemical technologies are required to provide cleaner and greener synthetic routes to partially fluorinated materials. The exploration of fundamental organofluorometallic chemistry of base metals, such as nickel, has potential to advance the development of novel catalytic processes towards this end. It has been established previously that zero-valent nickel complexes have the ability to efficiently catalyze the hydrodimerization of polyfluoroalkenes. The reactivity of the intermediate polyfluoronickelacycles was found to be influenced by modifications in the ligand sphere. Furthermore, an increase in oxidation state of the central metal atom was proposed as an additional strategy to increase the reactivity of the M-RF bond. In this thesis, through variation of the ligand environment and oxidation state of nickel, we have further developed the chemistry of high-valent polyfluoronickelacycles. Synthesis and characterization (NMR, EPR, UV/Vis, IR spectroscopy and electrochemistry) of new trivalent polyfluoronickelacycles are described as well as attempts to generate the corresponding tetravalent cations. Attempts to induce nucleophilic insertion of acetonitrile into the Ni-RF bond were also investigated herein. Challenges were encountered with the isolation of the tetravalent cations due to decomposition to the corresponding divalent nickelacycle.
|
7 |
High-Valent Perfluoronickelacycles: Intermediates for “Green” Routes to Fluorocarbons and Their DerivativesHunter, Nicole Marie 26 May 2011 (has links)
Fluorocarbons (FCs) and their derivatives (FCDs) are heavily relied on due to their wide range of uses (e.g. solvents, surfactants, refrigerants, and pharmaceuticals). Currently, FCs and FCDs are produced on an industrial scale via energy-intensive processes, using hazardous materials. Hence, new catalytic chemical technologies are required to provide cleaner and greener synthetic routes to partially fluorinated materials. The exploration of fundamental organofluorometallic chemistry of base metals, such as nickel, has potential to advance the development of novel catalytic processes towards this end. It has been established previously that zero-valent nickel complexes have the ability to efficiently catalyze the hydrodimerization of polyfluoroalkenes. The reactivity of the intermediate polyfluoronickelacycles was found to be influenced by modifications in the ligand sphere. Furthermore, an increase in oxidation state of the central metal atom was proposed as an additional strategy to increase the reactivity of the M-RF bond. In this thesis, through variation of the ligand environment and oxidation state of nickel, we have further developed the chemistry of high-valent polyfluoronickelacycles. Synthesis and characterization (NMR, EPR, UV/Vis, IR spectroscopy and electrochemistry) of new trivalent polyfluoronickelacycles are described as well as attempts to generate the corresponding tetravalent cations. Attempts to induce nucleophilic insertion of acetonitrile into the Ni-RF bond were also investigated herein. Challenges were encountered with the isolation of the tetravalent cations due to decomposition to the corresponding divalent nickelacycle.
|
8 |
Experimental and numerical analysis of variable-density flow and transport scenariosGoswami, Rohit Raj. Clement, Prabhakar Thangadurai, January 2008 (has links)
Thesis (Ph. D.)--Auburn University. / Abstract. Vita. Includes bibliographical references (p. 153-170).
|
9 |
High-Valent Perfluoronickelacycles: Intermediates for “Green” Routes to Fluorocarbons and Their DerivativesHunter, Nicole Marie January 2011 (has links)
Fluorocarbons (FCs) and their derivatives (FCDs) are heavily relied on due to their wide range of uses (e.g. solvents, surfactants, refrigerants, and pharmaceuticals). Currently, FCs and FCDs are produced on an industrial scale via energy-intensive processes, using hazardous materials. Hence, new catalytic chemical technologies are required to provide cleaner and greener synthetic routes to partially fluorinated materials. The exploration of fundamental organofluorometallic chemistry of base metals, such as nickel, has potential to advance the development of novel catalytic processes towards this end. It has been established previously that zero-valent nickel complexes have the ability to efficiently catalyze the hydrodimerization of polyfluoroalkenes. The reactivity of the intermediate polyfluoronickelacycles was found to be influenced by modifications in the ligand sphere. Furthermore, an increase in oxidation state of the central metal atom was proposed as an additional strategy to increase the reactivity of the M-RF bond. In this thesis, through variation of the ligand environment and oxidation state of nickel, we have further developed the chemistry of high-valent polyfluoronickelacycles. Synthesis and characterization (NMR, EPR, UV/Vis, IR spectroscopy and electrochemistry) of new trivalent polyfluoronickelacycles are described as well as attempts to generate the corresponding tetravalent cations. Attempts to induce nucleophilic insertion of acetonitrile into the Ni-RF bond were also investigated herein. Challenges were encountered with the isolation of the tetravalent cations due to decomposition to the corresponding divalent nickelacycle.
|
10 |
Single-Step Treatment of 2,4-Dinitrotoluene Via Zero-Valent Metal Reduction and Chemical OxidationThomas, J. Mathew 09 December 2006 (has links)
Many nitroaromatic compounds (NACs) are considered toxic and potential carcinogens. The purpose of this study was to develop an integrated reductive/oxidative process for treating NAC contaminated waters. The process consists of the combination of zero-valent manganese or iron and a hydroxyl radical based treatment technique. Corrosion promoters were added to the contaminated water to minimize passivation of the metallic species. Water contaminated with 2,4-dinitrotoluen (DNT) was treated with the integrated process using a recirculating batch reactor. It was demonstrated that addition of corrosion promoters to the contaminated water enhanced the rate of reaction of 2,4-DNT with zero-valent iron or manganese. Results showed that iron provided greater reduction of 2,4-DNT than manganese. Chemical oxidation was used to mineralize the reduction products. The degree of mineralization was measured analyzing the samples for total organic carbon and nitrates. A proposed reaction and corrosion mechanisms and rate expressions were developed during the course of the study.
|
Page generated in 0.0472 seconds