• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 16
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 105
  • 62
  • 56
  • 21
  • 16
  • 14
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Anaerobic Bioremediation of Hexavalent Uranium in Groundwater

Tapia-Rodriguez, Aida Cecilia January 2011 (has links)
Uranium contamination of groundwater from mining and milling operations is an environmental concern. Reductive precipitation of soluble and mobile hexavalent uranium (U(VI)) contamination to insoluble and immobile tetravalent uranium (U(IV)) constitutes the most promising remediation approach for uranium in groundwater. Previous research has shown that many microorganisms are able to catalyze this reaction in the presence of suitable electron-donors. The purpose of this work is to explore lowcost, effective alternatives for biologically catalyzed reductive precipitation of U(VI). Methanogenic granular sludge from anaerobic reactors treating industrial wastewaters was tested for its ability to support U(VI)-reduction. Due to their high microbial diversity, methanogenic granules displayed intrinsic activity towards U(VI)-reduction. Endogenous substrates from the slow decomposition of sludge biomass provided electron-equivalents to support efficient U(VI)-reduction without external electrondonors. Continuous columns with methanogenic granules also demonstrated sustained reduction for one year at high uranium loading rates. One column fed with ethanol, only enabled a short-term enhancement in the uranium removal efficiency, and no enhancement over the long term compared to the endogenous column. Nitrate, a common co-contaminant of uranium, remobilized previously deposited biogenic U(IV). U(VI) also caused inhibition to denitrification. An enrichment culture (EC) was developed from a zero-valent iron (Fe⁰)/sand packed-bed bioreactor. During 28 months, the EC enhanced U(VI)-reduction rates by Fe⁰ compared with abiotic Fe⁰ controls. Additional experiments indicated that the EC prevented the passivation of Fe⁰ surfaces through the use of cathodic H₂ for the reduction of Fe(III) in passivating corrosion mineral phases (e.g. magnetite) to Fe²⁺. This contributed to the formation of secondary minerals more enriched with Fe(II), which are known to be chemically reactive with U(VI). To determine the toxicity of U(VI) to different populations present in uranium contaminated sites, including methanogens, denitrifiers and uranium-reducers, experiments were carried out with anaerobic mixed cultures at increasing U(VI) concentrations. Significant inhibition to the presence of U(VI) was observed for methanogens and denitrifiers. On the other hand uranium-reducing microorganisms were tolerant to high U(VI) concentrations. The results of this dissertation indicate that direct microbial reduction of U(VI) and microbially enhanced reduction of U(VI) by Fe⁰ are promising approaches for uranium bioremediation.
12

Synthesis, Kinetic and Catalytic Studies of Manganese Complexes with Corrole and Porphyrin Ligands

Jeddi, Haleh 01 April 2017 (has links)
High-valent transition metal-oxo intermediates play a significant role in the catalytic cycle of the ubiquitous cytochrome P450 enzymes and in biomimetic catalytic systems. In this work, manganese(III) porphyrin and corrole systems (2) were synthesized and characterized by UV-vis absorbance and 1H-NMR, matching literaturereported spectroscopic data. Manganese(V)-oxo corroles (3) and a manganese(IV)-oxo porphyrin (4) were successfully generated by chemical oxidation using mchloroperoxybenzoic acid (m-CPBA), and their oxidation reactions with organic reductants were comparatively investigated. Results from single-turnover kinetic studies indicate that in the tris(pentafluorophenyl)corrole system (3a), the active oxidizing intermediate differs in different solvents. The active oxidizing intermediate in acetonitrile is likely the manganese(V)-oxo species 3a. However, in dichloromethane, the active oxidant is suspected to be a putative manganese(VI)-oxo species generated by disproportionation of the manganese(V)-oxo species. Tris(pentafluorophenyl)corrolato manganese(III) (2a) was shown to selectively catalyze sulfoxidation and epoxidation with iodobenzene diacetate [PhI(OAc)2] as a mild oxygen source. 2a exhibited higher conversions than triphenylcorrolato manganese(III) (2b), most likely because of the higher stability of 2a compared to 2b. In contrast, tetramesitylporphyrinato manganese(III) (2c) was more efficient in catalytic oxidations than 2a, resulting in much higher conversions, but much less selectivity. Other reported metalloporphyrin and metallocorrole systems show an accelerating effect upon addition of small amounts of water; however, neither corrole systems exhibited a positive water effect. This is attributed to the strong coordination between the manganese center and water, preventing the oxygen source from coordination.
13

The role of the M−PR2 fragment in hydrophosphination: from mechanisms to catalysis

Belli, Roman 19 August 2019 (has links)
In this thesis, the synthesis and reactivity of metal complexes containing phosphido (PR2−) and phosphenium (PR2+) ligands for the hydrophosphination of alkenes were investigated. The mechanisms of hydrophosphination mediated by these M-PR2 fragments were explored. Based on previous work in the Rosenberg group, Ru(η5-indenyl) complexes were explored and developed as catalysts for hydrophosphination. It was determined that Ru-phosphido complexes are key intermediates in the hydrophosphination of electron-deficient alkenes. A detailed study on the mechanisms of hydrophosphination catalyzed by the phosphido complexes Ru(η5-indenyl)(PPh2)(L)(PPh3) (4a, L = NCPh; b, L = PPh2H; c, L = CO) was performed. Evidence for product inhibition was found for this catalyst system using Reaction Progress Kinetic Analysis. Product inhibition is consistent with the observed catalyst resting state of a complex containing product phosphines and the determination that substitution of the product phosphine from Ru is rate-limiting. The ancillary ligands (L) of 4 were found to influence catalytic activity by enabling catalyst deactivation (L = NCPh) or off-cycle processes including alkene telomerization (L = CO). Proposed mechanisms for catalysis were devised based on these findings. These results are important mechanistic insights that will be useful for designing new catalysts for hydrophosphination. The unprecedented viability of metal phosphenium complexes as intermediates in hydrophosphination was also explored. Three Mo phosphenium complexes were synthesized via P-H bond hydride abstraction from coordinated secondary phosphines, PR2H. These complexes were found to mediate the stoichiometric hydrophosphination of alkenes and ketones. In particular, trans-[Mo(CO)3(PPh2H)2(PPh2)]+ (13) mediates the hydrophosphination of a wide scope of alkenes that includes ethylene, propene and 1-hexene, which are challenging substrates for metal-catalyzed hydrophosphination. Preliminary attempts were conducted to render this synthetic phosphenium-mediated hydrophosphination catalytic. These results provide evidence for the putative steps of a hydrophosphination cycle utilizing metal phosphenium complexes as intermediates. The phosphenium complexes trans-[Mo(CO)4(PR2H)(PR2)] (12a R = Tolp2, b R = Ph) were also investigated as Lewis acid catalysts for hydrosilylation. A tentatively-assigned η1-HSiEt3 adduct of 12a, [Mo(CO)4(PTolp2H)(PTolp2{HSiEt3})] (20a), was observed by low temperature 31P{1H} NMR and was studied computationally. Complex 12b is proposed to behave as a Lewis acid catalyst for hydrosilylation. An off-cycle equilibrium is proposed that results in the formation of EtSi+. This work is a unique example of P(III) Lewis acid catalysis, of which there are few examples in the literature. / Graduate / 2020-07-29
14

Rational ligand design to support reactive main-group compounds

Urwin, Stephanie Jane January 2018 (has links)
The chemistry of the tetrameric low-valent aluminium compoud (Cp*Al)4 (Cp* = 1,2,3,4,5- pentamethylcyclopentadienyl) is relatively undeveloped compared to its monomeric cousin dippNacNacAl (dippNacNac = 2,6-diisopropylphenyl-β-diketiminate). Given that the former can be formed by the reductive elimination of Cp*H from Cp*2AlH, a process common to transition metals yet rare with light main-group elements, using the Cp* ligand could unlock an abundance of unexpected reactivity for aluminium. An overview of the literature regarding the synthesis and reactivity of low oxidation state aluminium compounds is provided in chapter 1, as well as an introduction to relevant magnesium chemistry for this work. Chapter 2 studies the mechanism of C-H reductive elimination from Cp*2AlH to form (Cp*Al)4, and the properties which allow reductive elimination to take place are revealed. A transition state is identified where the Cp* group has a higher hapticity than in the starting material, a process which is thought to enable the reductive elimination. Using this insight, aluminium hydride and halide complexes featuring 9-methylfluorenyl ligands are synthesised and reduction of the aluminium centre is investigated. The reactivity of (Cp*Al)4 is considered in chapter 3 of this thesis. The formal cycloaddition reaction between (Cp*Al)4 and diphenylacetylene produces a Lewis acidic 1,4- dialuminacylohexadiene derivative. The inner Al2C4 ring of this complex is stable, with onward reactions happening at the complex's periphery. Insertion reactions in the Al-CCp* bonds are observed with unsaturated C-N species. With 2,6-dimethylphenylisonitrile the Al2C4 complex forms a zwitterionic aluminate, featuring a stable carbocation derived from the Cp* group. An amidinate complex with an unusual Cp* backbone is formed from the insertion of carbodiimides into the Al-CCp* bond of the 1,4-dialuminacyclohexadiene. Extending this, the insertion of carbon dioxide into the same bond is explored. The use of amidine ligands is common in main-group chemistry, however literature relating to the related phosphaamidinate ligands ([RPC(R)NR]-) is only reported sporadically. They have not been applied in a general manner to main-group chemistry thus far. Chapter 4 describes the synthesis of five new phosphaamidinate pro-ligands where the steric bulk of both the phosphorus and nitrogen components is increased systematically. To evaluate these new ligands, their coordination chemistry with magnesium was investigated. Three examples of heteroleptic LMgnBu (L = phosphaamidinate) complexes are synthesised, which all show high activity for the ring-opening polymerisation of racemic lactide. The resulting polylactide chains show good molecular weights and polydispersity indices. The synthesis of homoleptic L2Mg complexes is also described. Chapter 5 applies these new phosphaamidinate ligands to aluminium chemistry. An aluminium hydride species is isolated, which is shown to form via a probable lithium aluminate intermediate. The lifetime of this intermediate is found to be heavily dependent on the reaction solvent.
15

Biomimetic Studies of Oxidation Reactions by Metalloporphyrins through Ligand Effect and Kinetic Studies of Photo-Generated Porphyrin-Iron(Iv)- Oxocompound II Models

Patel, Dharmesh J 01 April 2018 (has links)
High-valent iron(IV)-oxo porphyrins are the central oxidizing species in hemecontaining enzymes and synthetic oxidation catalysts. Many transition metal complexes have been extensively studied as models of the ubiquitous cytochrome P450 enzymes to probe the sophisticated oxygen atom transfer (OAT) mechanism as well as to invent enzyme-like oxidation catalysts. In this work, two metalloporphyrin complexes have been successfully synthesized, and spectroscopically characterized. A new photochemical entry to porphyrin-iron(IV)-oxo derivatives, commonly referred to as compound II models, was also investigated in two porphyrin ligands that differ in electronic and steric environments. As determined by their distinct UV-vis spectra and kinetic behaviors, iron(IV)-oxo porphyrins [FeIV(Por)O] were successfully produced by visible light irradiation of highly photo-liable porphyrin-iron(III) bromates. The iron(IV)-oxo porphyrins investigated in this study include 5,10,15,20- tetra(pentafluorophenyl)porphyrin-iron(IV)-oxo (4a), and 5,10,15,20-tetra(2,6- difluorophenyl)porphyrin-iron(IV)-oxo (4b).
16

Treatment of Trichloroethylene in Aqueous Solution Using Nanoscale Zero-Valent Iron Emulsion

-i Chang, Yung 27 August 2007 (has links)
The objective of this research was to evaluate the treatment efficiency of a trichloroethylene(TCE)-contaminated aqueous solution and soil by combined technologies of the emulsified nanoscale zero-valent iron slurry (ENZVIS) and electrokinetic remediation process. Nanoiron was synthesized using the chemical reduction method by industrial grade chemicals. The synthesized nanoparticles contained elemental iron and iron oxide as determined by X-ray diffractmetry(XRD). Micrographs of FE-SEM have shown that a majority of nanoiron were in the size range of 30~50 nm. The stability study of food-grade soybean oil emulsion was conducted using six non-ionic surfactants and soybean oil. The results have shown that the emulsion prepared by mixed surfactants (Span 80 and Tween 40) and soybean oil yielded a better emulsion stability. Based on the above finding, the nanoiron slurry, soybean oil and aforementioned, mixed surfactants were used to prepare ENZVIS. Degradation of TCE by ENZVIS under various operating parameters was carried out in batch experiments. The experimental results have indicated that emulsified nanoiron outperformed nanoiron in TCE dechlorination rate. ENZVIS (0.75 g-Fe0/L) degradated TCE (initial conc.= 10 mg/L) down to 45 %. An increase of the oil dosage could improve the stability of the emulsion, but yielding a negative influence on degradation of TCE. Experimental results also showed that ENZVIS could remove TCE up to 94 % when pH=6. It was also formed that a higher TCE initial concentration would result in a higher TCE removal efficiency. In addition, using ENZVIS to degraded TCE-contaminated artificial groundwater has indicated that nitrate and carbonate of groundwater will suppress nanoiron reaction with TCE. Especially, a high concentration of carbonate in the reaction system might form a passive film or precipitates on nanoiron surface. This study further evaluated the treatment efficiency of combining ENZVIS and electrokinetic technology in treating a TCE-contaminated soil. Experimental conditions were given as follows:(1) initial TCE concentration in the range of 98~118 mg/kg; (2) an electric potential gradient of 1 V/cm; (3) a daily addition of 20 mL ENZVIS; and (4) a reaction time of 10 days. Experimental results have shown that an addition of ENZVIS to the anode reservoir of strongly acidic and oxidative environment would cause nanoiron to corrode rapidly and decrease TCE removal efficiency. On the other hand, an addition of ENZVIS to the cathode reservoir would enhance the degradation of TCE therein. In summary, an addition of ENZVIS to the cathod reservoir would yield the best TCE removal efficiency.
17

Pilot-Scale Demonstration of hZVI Process for Treating Flue Gas Desulfurization Wastewater at Plant Wansley, Carrollton, GA

Peddi, Phani 1987- 14 March 2013 (has links)
The hybrid Zero Valent Iron (hZVI) process is a novel chemical treatment platform that has shown great potential in our previous bench-scale tests for removing selenium, mercury and other pollutants from Flue Gas Desulfurization (FGD) wastewater. This integrated treatment system employs new iron chemistry to create highly reactive mixture of Fe^0, iron oxides (FeOx) and various forms of Fe (II) for the chemical transformation and mineralization of various heavy metals in water. To further evaluate and develop the hZVI technology, a pilot-scale demonstration had been conducted to continuously treat 1-2 gpm of the FGD wastewater for five months at Plant Wansley, a coal-fired power plant of Georgia Power. This demonstrated that the scaled-up system was capable of reducing the total selenium (of which most was selenate) in the FGD wastewater from over 2500 ppb to below 10 ppb and total mercury from over 100 ppb to below 0.01 ppb. This hZVI system reduced other toxic metals like Arsenic (III and V), Chromium (VI), Cadmium (II), Lead (II) and Copper (II) from ppm level to ppb level in a very short reaction time. The chemical consumption was estimated to be approximately 0.2-0.4 kg of ZVI per 1 m^3 of FGD water treated, which suggested the process economics could be very competitive. The success of the pilot test shows that the system is scalable for commercial application. The operational experience and knowledge gained from this field test could provide guidance to further improvement of technology for full scale applications. The hZVI technology can be commercialized to provide a cost-effective and reliable solution to the FGD wastewater and other metal-contaminated waste streams in various industries. This technology has the potential to help industries meet the most stringent environmental regulations for heavy metals and nutrients in wastewater treatment.
18

Photochemical Oxidation Studies of Porphyrin Ruthenium Complexes

Vanover, Eric 01 August 2012 (has links)
In nature, transition metal containing enzymes display many biologically important, attractive and efficient catalytic oxidation reactions. Many transition metal catalysts have been designed to mimic the predominant oxidation catalysts in nature, namely, the cytochrome P450 enzymes. Ruthenium porphyrin complexes have been the center of this research and have successfully been utilized, as catalysts, in major oxidation reactions, such as the hydroxylation of alkanes. The present work focuses on photocatalytic studies of aerobic oxidation reactions with well characterized ruthenium porphyrin complexes. The photocatalytic studies of aerobic oxidation reactions of hydrocarbons The photocatalytic studies of aerobic oxidation reactions of hydrocarbons catalyzed by a bis-porphyrin-ruthenium(IV) μ-oxo dimer using atmospheric oxygen as the oxygen source in the absence of co-reductants were investigated. The ruthenium(IV) μ-oxo bisporphyrin (3a-d) was found to catalyze aerobic oxidation of a variety of organic substrates efficiently. By comparison, 3d was found to be a more efficient photocatalyst than the well-known 3a under identical conditions. A KIE at 298K was found to be larger than those observed in autoxidation processes, suggesting a nonradical mechanism that involved the intermediacy of ruthenium(V)-oxo species as postulated. The reactivity order in the series of ruthenium(IV) μ-oxo bisporphyrin complexes follows TPFPP>4- CF3TPP>TPP, and is consistent with expectations based on the electrophilic nature of the ruthenium(IV) μ-oxo bisporphyrin species. The trans-dioxoruthenium(VI) porphyrins have been among the best characterized metal-oxo intermediates and their involvement as the active oxidant in the hydrocarbon oxidation have been extensively studied. In addition to the well-known chemical methods, we developed a novel approach for generation of trans-dioxoruthenium( VI) porphyrins with visible light by extension of the known photoinduced ligand cleavage reactions. A series of trans-dioxoruthenium(VI) porphyrin complexes (6a-d) were photochemically synthesized and spectroscopically characterized by UV-vis, and 1H-NMR.
19

The Application of Nanoscale Zero-Valent Iron Slurry: Degradation Pathways and Efficiencies of Aqueous TCE under Different Atmospheres, and Transport Phenomena and Influence on Colony in Soil

Tu, Hsiu-Chuan 15 February 2007 (has links)
In this research, nanoscale zero-valent iron (NZVI) was synthesized using the chemical reduction method. Experimental results have revealed that nanoiron synthesized by the reagent-grade chemicals had a size range of 50-80 nm, as determined by FE SEM. BET specific surface area of thus synthesized nanoparticles was 66.34 m2/g. NZVI prepared by the industrial-grade chemicals had a broader particle size distribution (30-80 nm) and its BET specific surface area was 61.50 m2/g. Results of XRD showed that both types of NZVI were composed of iron with a poor crystallinity. Additional test results further showed that both types of NZVI had similar characteristics. NZVI prepared by the chemical reduction method tends to aggregate resulting in a significant loss in reactivity. To overcome this disadvantage, four water-soluble dispersants were used in different stages of the NZVI preparation process. Of these, Dispersant A (an anionic surfactant) has shown its superior stabilizing capability to others. An addition of 0.5 vol % Dispersant A during the nanoiron preparation process would result in a good stability of NZVI slurry (NZVIS). Degradation of trichloroethylene (TCE) by NZVIS under different atmospheres was carried out in batch experiments. Experimental results have shown that the TCE dechlorination rate increased markedly when the reaction proceeded under hydrogen gas atmosphere as compared with that of air. Methane was the primary end product with a trace amount of ethane and ethylene when the reaction was conducted under the atmosphere of H2. It was suggested that an addition of H2 to the reaction system could promote the hydrogenolysis reaction for better degradation. On the other hand, ethane was the main product when the reaction system consisted of nanoscale palladized iron and H2 atmosphere. It demonstrated that Pd-catalyzed TCE dechlorination has resulted in a direct conversion of TCE to ethane in the study. The greatest dechlorination rate was obtained when 2 g/L nanoscale palladized iron and 50 mL H2 was employed in the reaction system. Under the circumstances, the TCE (10 mg/L) removal efficiency was up to 99 % in 3 minutes. Experimental results have demonstrated that the reaction system with both nanoscale palladized iron and H2 atmosphere would promote TCE degradation rate. The culture of microorganism in soil showed minor changes to microbial community structures between the pre- and post-injection conditions. The number of microorganism colony was found to be increased after adding 1 mL NZVIS to 1 g soil. Experimental results revealed that NZVIS would not cause the inhibition or reduction of microorganism activity. Surface modification of NZVI slurry by Dispersant A could enhance its transport in saturated porous media. Sticking coefficients were determined to be 0.56 and 0.11, respectively, for bare and Dispersant A-modified NZVIS transporting in quartz sand columns. The sticking coefficient for modified NZVIS transport in soil (loamy sand) column was determined to be 0.0061. Apparently, NZVIS modified by Dispersant A would enhance the transport of NZVI in saturated porous media. The results of combining electrokinetic technology and NZVIS injection tests in horizontal soil column illustrated that the sticking coefficient was 0.00034 and the total content of iron reduced 10 wt. %. Experimental results revealed that the transport distance of NZVIS in saturated horizontal soil column would be greatly increased under electronkinetic conditions.
20

SYNTHESIS, PROPERTIES, STRUCTURAL CHARACTERIZATION, AND REACTIVITY OF LOW-VALENT TITANIUM (BISDIIMINE) COMPLEXES

Maynor, Marc Steven 01 January 2004 (has links)
The synthesis, structure, and reactivity of titanium bis(diimine) complexes supported by 1,2-alternate dimethylsilyl-bridged p-tert-butylcalix[4]arene dianion and 2,2' methylene-bridged 4-methyl, 6-tertbutyl phenol ligands is reported. The molecular structure of [(DMSC)Ti(bpy)2] (28) and [(MBMP)Ti(bpy)2] (55) was characterized by X-ray crystallography. Complexes [(DMSC)Ti(bpy)2] (28), [(DMSC)Ti(dmbpy)2] (29), and [(DMSC)Ti(phen)2] (30) undergoes light-assisted reactions with two or more equivalents of (C6H5)2CO or (p-MeC6H4)2CO to give the corresponding 1-aza-5-oxa-titanacyclopentene complexes 37-42. Similar reactivity was observed with [(MBMP)Ti(bpy)2] (55), [(MBMP)Ti(dmbpy)2] (56), and [(MBMP)Ti(phen)2] (57). The molecular structure of [(MBMP)Ti{kappa-3-OC(C6H5)2C10H7N2}{OCH(C6H5)2}] (58) was characterized by 1H and 13C NMR as well as X-Ray crystallography.

Page generated in 0.0595 seconds