• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and optimization of catalysts for biomass transformation to obtain value-added chemical products

Ruiz-Bernal, Zaira 15 September 2023 (has links)
El agotamiento de los combustibles fósiles, y los problemas medioambientales derivados de su uso, conllevan importantes problemas ambientales relacionados con la acumulación de CO2 en la atmósfera. Esta situación está impulsando muchos trabajos de investigación destinados a encontrar alternativas al uso de combustibles fósiles y a desarrollar nuevas estrategias para la producción sostenible de productos químicos de alto valor añadido. El uso de biomasa lignocelulósica como materia prima renovable para la obtención de energía y productos químicos ha demostrado ser interesante. Entre las diferentes formas de transformar la biomasa lignocelulósica, el proceso de hidrólisis en medio ácido da lugar a la conversión de la celulosa en glucosa, la cual puede hidrolizarse posteriormente formando 5-hidroximetilfurfural (HMF), y éste, finalmente, da lugar a Ácido Levulínico (AL) y ácido fórmico (AF) por rehidratación. También se obtiene un residuo carbonoso, a partir del cual se pueden preparar materiales funcionales de carbono. Por ello, este proceso se considera muy interesante desde el punto de vista de la revalorización de residuos biomásicos. El AL es considerado una de las mejores moléculas plataforma, siendo útil para preparar muchos compuestos químicos con valor añadido, por ejemplo, γ- Valerolactona (GVL). La GVL es un compuesto de gran interés en una “cascada” de procesos para la producción de combustibles líquidos, además de en otras aplicaciones (por ejemplo, como fragancia, ingrediente alimentario, aditivo de combustible y disolvente). Esta reacción, la producción catalizada de GVL a partir de AL, ha sido ampliamente estudiada, pero todavía hay aspectos que deben mejorarse y/o comprenderse más en profundidad. En este contexto, el presente trabajo está enfocado en la preparación y caracterización de catalizadores Ru/C eficientes para la hidrogenación catalítica de AL con el fin de obtener GVL. En este estudio se han utilizado varios materiales de carbono muy diferentes entre sí, y uno de los principales objetivos ha sido caracterizar exhaustivamente los materiales de carbono con el fin de establecer una relación entre las propiedades de los catalizadores y la actividad catalítica y selectividad observadas. El otro objetivo importante ha sido intentar que todo el proceso, incluida la preparación de los catalizadores y las condiciones de reacción, sea lo más sencillo y menos costoso energéticamente posible. Sin embargo, el primer paso ha sido asegurar un análisis adecuado y preciso de los productos de reacción resultantes del test catalítico. Se ha observado que el análisis del AL y de los productos que intervienen en la reacción es bastante complejo, debido a la existencia de reacciones paralelas y/o consecutivas. Por ello, se ha llevado a cabo un estudio exhaustivo del método de análisis con HPLC, utilizando dos combinaciones válidas de columna + detector. Este estudio ha proporcionado una forma correcta de identificar y cuantificar los productos y subproductos presentes en la solución (por ejemplo, la presencia de pseudo-LA y la forma enólica del AL ha sido desvelada, pudiendo ser esta información de gran utilidad en estudios más undamentales). En cuanto al estudio sobre el desarrollo, caracterización y aplicación de catalizadores de Ru/C para la conversión de AL en GVL, este comenzó con el uso, como soportes de catalizadores, de materiales carbón, incluidos carbones activados comerciales, pero también carbones activados producidos a partir de residuos de biomasa en el laboratorio. En los primeros experimentos catalíticos, se han utilizado condiciones de operación estándar (170 °C, 15 bar), pero también se ha probado una temperatura de reacción más suave, 70°C, con el fin de hacer el proceso más eficiente energéticamente. Los resultados obtenidos han revelado que el uso de condiciones más suaves es factible y que las propiedades de los soportes, en particular la química superficial de estos, tienen un efecto muy importante sobre la actividad catalítica. Los buenos resultados de actividad obtenidos a 70oC han motivado estudios adicionales para comprobar, por ejemplo, el efecto de la morfología del material de carbón y/o el efecto de evitar el proceso previo de reducción del catalizador (ex-situ, antes de la reacción). Si bien la morfología no parece ser relevante en las propiedades catalíticas, la química superficial de los soportes de carbón ha demostrado tener un efecto significativo en la reducción metálica parcial in-situ (en condiciones de reacción), lo que lleva a la formación de nanopartículas de Ru con un tamaño medio de unos 2-4 nm, que parecen ser adecuadas para esta reacción, en lugar de más pequeñas. Los soportes de carbón con menor contenido en grupos oxigenados superficiales han dado lugar a catalizadores que, incluso no reducidos previamente, presentan muy buenas propiedades catalíticas, siendo además reutilizables. La influencia de la química superficial de los soportes de carbón en la actividad catalítica se ha estudiado en detalle. Para ello, se ha preparado una serie de soportes de carbón utilizando un CA comercial (con alta química superficial) que ha sido tratado térmicamente para eliminar selectivamente grupos oxigenados superficiales, sin modificaciones significativas de las propiedades texturales. Se ha encontrado que una menor cantidad de grupos de tipo carboxílico facilita la reducción de Ru in-situ y disminuye la participación de las reacciones secundarias que convierten el AL en pseudo-AL o en la forma enólica del AL (un subproducto detectado). La presencia de Ru reducido y una superficie de carbono más limpia favorece el efecto spill over de H2 que genera nuevos sitios ácidos justo en la proximidad de los sitios de hidrogenación, lo que parece afectar a la selectividad de GVL. Estos resultados han revelado qué propiedades se requieren en un soporte de carbón para preparar catalizadores útiles para esta aplicación.
2

Uso de sólidos ácidos na conversão catalítica do ácido levulínico

Oliveira, Gilmar de January 2015 (has links)
Orientador: Prof. Dr. Wagner Alves Carvalho / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Ciência e Tecnologia/Química, 2015. / O aumento da demanda energética e depreciação das reservas de combustíveis fósseis implicam na adoção de metodologias que estimulem a utilização de fontes alternativas na produção de combustíveis. A biomassa possui considerável importância neste cenário, sendo uma promissora fonte de energia renovável quando convertida a combustíveis e produtos químicos de importância industrial. Reações de desidratação e hidrogenação ocorrem em meio ácido, podendo ser catalisadas por sólidos ácidos. O objetivo deste trabalho foi avaliar a atividade de catalisadores mono- e bimetálicos, contendo Sn e Ru suportados em carvão, assim como o impacto do aumento da acidez do meio utilizando sólidos sulfonados como co-catalisadores. As condições foram otimizadas para a reação com um catalisador comercial 5 % de Ru em carvão. Neste trabalho foram testados nióbia (CBMM ¿ HY-340), argila pilarizada (Fluka) e carvão (Darco) sulfonado na conversão do ácido levulínico. Com o intuíto de otimizar a reação de hidrogenação avaliou-se o uso de carvão variando-se a relação metálica Sn/Ru. Os sólidos foram tratados com ácido sulfúrico fumegante concentrado, os carvões contendo metal sofreram impregnação sucessiva e impregnação simultânea. A presença de grupos sulfônicos e o aumento da acidez dos sólidos demonstram a adequação do processo de sulfonação. O melhor catalisador para reação de hidrogenação do ácido levulínico foi o carvão Darco contendo Sn-Ru 1:0,5, associado ao co-catalisador carvão sulfonado, apresentando conversão de 75% após duas horas de reação e 98% de seletividade para GVL, à 100 °C e pressão de 30 bar de hidrogênio. / Increasing energy demand and depreciation of the fossil fuels reserves implicate in the adoption of methodologies that stimulate the use of alternative sources in the production of fuels. Biomass has considerable importance in this scenario, being a promising source of renewable energy when converted to fuels and chemical products of industrial importance. Dehydration and hydrogenation reactions take place in acid medium, and may be catalyzed by acid solids. The objective of this work was to evaluate the activity of monometallic and bimetallic catalysts, containing Sn and Ru supported on carbon, as well as the impact of the increase of the acidity in the reaction system using sulfonated solids as co-catalysts. Reaction conditions were optimized with a commercial catalyst, 5% of Ru supported on carbon. In this work niobia (CBMM. HY -340), pillared clay (Fluka) and sulfonated carbon (Darco) were tested in the conversion of the levulinic acid. With the aim of optimizing the hydrogenation reaction the use of carbon was evaluated by varying the Sn/Ru metallic relationship. The solids were treated with concentrated fuming sulfuric acid, while the carbon containing both Sn and Ru was submitted to successive and simultaneous impregnation processes. The presence of sulfonic acid groups and the increase of the acidity of the solids demonstrate the viability of the sulfonation process. The best catalyst for reaction of levulinic acid hydrogenation was Darco carbon containing Sn-Ru 1:0,5, associated to the sulfonated carbon as co-catalyst, presenting conversion of 75% after 2 h reaction time and 98% of selectivity for GVL, under 100 °C and hydrogen pressure of 30 bar.

Page generated in 0.0508 seconds