1 |
Modélisation des circulations atmosphériques pour l'étude de la pollution des vallées alpinesbrulfert, guillaume 26 November 2004 (has links) (PDF)
Les phénomènes météorologiques locaux observés dans les vallées alpines conduisent fréquemment à l'accumulation des émissions anthropiques dans les basses couches de l'atmosphère. Le développement d'un modèle numérique a permis de reproduire l'évolution chimique de la masse d'air pendant les périodes d'observations intensives du programme POVA. Dans les vallées de Chamonix et de Maurienne, les simulations réalisées démontrent par l'étude d'indicateurs photochimiques (NOy, O3/NOz, H2O2/HNO3) un régime de production de l'ozone contrôlé par les composés organiques volatils ainsi qu'une prépondérance régionale de ce composé secondaire. Le développement d'un indicateur localisant les zones de production de l'ozone peut aider à définir des scénarios d'abattement. Le mécanisme chimique RACM permet de décrire l'évolution de nombreuses espèces, il est possible de conclure qu'en hiver, le trafic routier et le chauffage sont les principaux émetteurs des composés organiques volatils.
|
2 |
Modélisation numérique de la couche limite atmosphérique par condition stable en terrain complexe. Application à la qualité de l'air / Numerical modelling of the stable atmospheric boundary layer over complex terrain and application to air qualityQuimbayo-Duarte, Julian 13 March 2019 (has links)
En hiver, par condition anticyclonique hivernale, les régions montagneuses urbanisées font l'objet de conditions atmosphériques stables et découplées, qui conduisent à des épisodes de forte pollution particulaire. Ce travail de thèse traite de la caractérisation des facteurs de pollution de l'air aux particules par condition stable en vallée alpine encaissée, du point de vue de la dynamique atmosphérique. Ce travail repose sur des simulations numériques idéalisées et en conditions réelles à l'aide du modèle Weather Research and Forecasting (WRF), les particules étant modélisées par un champ de traceur passif.Dans une première partie, des simulations numériques à haute résolution ont été réalisées, en utilisant deux configurations différentes de vallées tridimensionnelles idéalisées ouvrant sur une plaine. La première configuration correspond à une vallée de largeur constante dans la direction de l'axe de la vallée ouvrant sur une plaine. Dans la seconde configuration, la vallée est composée de deux sections, la section aval, qui ouvre sur la plaine, étant plus étroite que la section amont. Cette configuration est appelée "pooling". Quelle que soit la configuration, la variation du profil vertical de température le long de l'axe de la vallée conduit à d'un gradient de pression horizontal générant un vent de vallée. Les configurations de type "pooling" sont associées à des concentrations de polluants plus élevées que dans le cas où la largeur de la vallée ne varie pas, car le vent de vallée est plus faible dans la configuration "pooling". L'impact de la largeur de la section aval sur la concentration de polluants dans la section amont est remarquable: la ventilation de la section amont peut être complètement bloquée pendant la majeure partie de la simulation (six heures) lorsque le rapport de largeur de la section amont à la section aval est égal à 10.La deuxième partie concerne une situation réelle en vallée alpine, durant un épisode fortement pollué de février 2015. La dynamique atmosphérique et la concentration de particules fines (PM) ont été modélisées dans une section de la vallée de l'Arve autour de la ville de Passy par le modèle WRF-Chem durant cet épisode. Pour cela, le cadastre d'émission préparé par l'agence de qualité de l'air de la région Auvergne Rhône-Alpes a été implémenté dans le modèle. La dynamique de la couche limite a été comparée à des profils verticaux de vent et température mesurés lors d'une campagne de terrain durant l'épisode pollué, et la concentration de PM comparée aux données de stations de qualité de l'air. La contribution des vallées tributaires à la pollution atmosphérique dans cette section de la vallée de l'Arve a d'abord été étudiée. Les résultats montrent que cette contribution est très faible par rapport à celle des sources locales; ceci implique que les émissions $in-situ$ sont principalement responsables de la forte concentration de particules polluantes enregistrée dans la vallée car le fond de vallée est découplé de l'atmosphère au-dessus de la vallée. Les processus de ventilation et leur influence sur la concentration de particules (PM) ont ensuite été étudiés. L'analyse montre qu'en raison de la ventilation limitée autour de la ville de Passy, la variabilité horaire de la concentration de PM dans la ville est contrôlée par les émissions. / During wintertime anticyclonic regimes, urbanized mountain areas often experience stable and decoupled atmospheric conditions, resulting in severe episodes of particulate air pollution. This study deals with the characterization of drivers of particulate air pollution in deep alpine valleys under such stable conditions from the point of view of atmospheric dynamics. The work has been carried out through the implementation of both idealized and real case numerical simulations using the Weather Research and Forecasting (WRF) model. Particulate air pollution has been modelled by implementing passive tracers in the simulations.In a first part, high-resolution numerical simulations have been performed using two different configurations of three-dimensional idealized valleys opening onto a plain. The first configuration corresponds to a valley of constant width in the along-valley direction, directly opening onto a plain. The second one consists in a valley of varying width in that direction, with an upstream section of larger width than the downstream section, which opens onto the plain. The latter configuration is referred to as a pooling case. The change in the vertical temperature profile along the valley axis in all configurations results in a horizontal pressure gradient that leads to the development of an along-valley flow. Configurations in which the upstream section of the valley opens onto a narrower one have shown to be prone to higher pollutant concentrations than in the case of a valley opening directly onto a plain, due to the weaker down-valley flow developing in the variable width configurations. The impact of the downstream valley section on the concentration of pollutants in the upstream valley section is remarkable: the ventilation of the upstream valley section can be completely blocked for most of the simulation (six hours) when the ratio of the upstream to downstream valley section width is equal to 10.The second part deals with a real case situation, focusing on a section of the alpine Arve River valley around the city of Passy. The numerical modelling of the atmospheric dynamics and particulate matter (PM) concentration in that section has been performed during a strongly polluted wintertime episode of February 2015. For this purpose the emission inventory prepared by the air quality agency of the région Auvergne Rhône-Alpes has been implemented in the WRF-Chem model. The boundary layer dynamics has been compared to wind and temperature profiles collected during a field campaign conducted during the episode, and PM concentration has been compared to data recorded by air quality stations. The contribution of the valley tributaries to air pollution within the section considered has been first studied. Results show that this contribution is very small compared to that from local sources; this implies that $in-situ$ emissions are primarily responsible for the high PM concentration recorded in the valley since the valley bottom is decoupled from the atmosphere above the valley. The ventilation characteristics of the valley and their influence on the particulate matter (PM) concentration have next been investigated. The analysis indicates that due to the limited ventilation around the city of Passy, the hourly variability of PM concentration therein is driven by that of the emissions.
|
Page generated in 0.065 seconds