1 |
Culturing Vallisneria americana for Restoration EffortsTanski, Erin M. 05 1900 (has links)
Robust Vallisneria americana was cultured for restoration purposes. Preliminary studies, with various iron treatments, were conducted to ascertain the amount of phosphorous release into the water column from sediments. There was a significant difference in the amount of phosphorous released if commercial sediment was used with a low iron amendment or without an iron amendment. The second study consisted of planting V. americana on two different sediment types while supplying half of the plants with additional CO2. Plants grown on pond sediment with additional CO2 had significantly more biomass. In the third study all plants were grown on pond sediment, and half were treated with CO2. All plants that were treated with additional CO2 had significantly more biomass than those that were aerated.
|
2 |
Le contenu en azote de Vallisneria americana : un élément intégrateur de l'hétérogénéité spatiale et temporelle du lac St-Pierre, un lac fluvial du fleuve St-LaurentBlanchet, Catherine January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
3 |
Le contenu en azote de Vallisneria americana : un élément intégrateur de l'hétérogénéité spatiale et temporelle du lac St-Pierre, un lac fluvial du fleuve St-LaurentBlanchet, Catherine January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
4 |
Carbon acquisition in variable environments: aquatic plants of the River Murray, Australia.Barrett, Melissa S. January 2008 (has links)
This thesis considers the implications of changes in the supply of resources for photosynthesis, with regard for modes of carbon acquisition employed by aquatic plants of the River Murray. Carbon supplies are inherently more variable for aquatic plants than for those in terrestrial environments, and variations are intensified for plants in semi-arid regions, where water may be limiting. In changeable environments the most successful species are likely to be those with flexible carbon-uptake mechanisms, able to accommodate variations in the supply of resources. Studies were made of plants associated with wetland habitats of the Murray, including Crassula helmsii, Potamogeton tricarinatus, P. crispus and Vallisneria americana. The aim was to elucidate the mechanisms of carbon uptake and assimilation employed, and to determine how flexibility in carbon uptake and/or assimilation physiology affect survival and distribution. Stable carbon isotopes were used to explore the dynamics of carbon uptake and assimilation, and fluorescence was used to identify pathways and photosynthetic capacity. The studies suggest that physiological flexibility is adaptive survival in changeable environments, but probably does not enhance the spread or dominance of these species. V. americana is a known bicarbonate-user, and it is shown here that it uses the Crassulacean Acid Metabolism (CAM) photosynthetic pathway under specific conditions (high light intensity near the leaf tips) concurrently with HCO[subscript]3 - uptake, while leaves deeper in the water continue to use the C[subscript]3 pathway, with CO₂ as the main carbon source. However, V. americana does not use CAM when under stress, such as exposure to high light and temperature. The diversity of carbon uptake and assimilation mechanisms in this species may explain its competitive ability in habitats associated with the Murray. In this way it is able to maximise use of light throughout the water column. In shallow, warm water, where leaves are parallel to the surface, CAM ability is likely to be induced along the length of the leaf, allowing maximal use of carbon and light. The amphibious C. helmsii is shown to use CAM on submergence, even where water levels fluctuate within 24 hours. This allows continued photosynthesis in habitats where level fluctuations prevent access to atmospheric CO₂. It appears that stable conditions are most favourable for growth and dispersal, and that the spread of C. helmsii is mainly by the aerial form. Carbon uptake by P. tricarinatus under field conditions is compared with that of P. crispus to demonstrate differences in productivity associated with aqueous bicarbonate and atmospheric CO₂ use. P. tricarinatus uses HCO[subscript]3 - uptake to promote growth toward the surface, so that CO₂ can be accessed by floating leaves. Atmospheric contact provides access to light and removes the limitation of aqueous diffusive resistance to CO₂, thereby increasing photosynthetic capacity above that provided by submerged leaves. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1320380 / Thesis (Ph.D) -- University of Adelaide, School of Earth and Environmental Sciences, 2008
|
5 |
Carbon acquisition in variable environments: aquatic plants of the River Murray, Australia.Barrett, Melissa S. January 2008 (has links)
This thesis considers the implications of changes in the supply of resources for photosynthesis, with regard for modes of carbon acquisition employed by aquatic plants of the River Murray. Carbon supplies are inherently more variable for aquatic plants than for those in terrestrial environments, and variations are intensified for plants in semi-arid regions, where water may be limiting. In changeable environments the most successful species are likely to be those with flexible carbon-uptake mechanisms, able to accommodate variations in the supply of resources. Studies were made of plants associated with wetland habitats of the Murray, including Crassula helmsii, Potamogeton tricarinatus, P. crispus and Vallisneria americana. The aim was to elucidate the mechanisms of carbon uptake and assimilation employed, and to determine how flexibility in carbon uptake and/or assimilation physiology affect survival and distribution. Stable carbon isotopes were used to explore the dynamics of carbon uptake and assimilation, and fluorescence was used to identify pathways and photosynthetic capacity. The studies suggest that physiological flexibility is adaptive survival in changeable environments, but probably does not enhance the spread or dominance of these species. V. americana is a known bicarbonate-user, and it is shown here that it uses the Crassulacean Acid Metabolism (CAM) photosynthetic pathway under specific conditions (high light intensity near the leaf tips) concurrently with HCO[subscript]3 - uptake, while leaves deeper in the water continue to use the C[subscript]3 pathway, with CO₂ as the main carbon source. However, V. americana does not use CAM when under stress, such as exposure to high light and temperature. The diversity of carbon uptake and assimilation mechanisms in this species may explain its competitive ability in habitats associated with the Murray. In this way it is able to maximise use of light throughout the water column. In shallow, warm water, where leaves are parallel to the surface, CAM ability is likely to be induced along the length of the leaf, allowing maximal use of carbon and light. The amphibious C. helmsii is shown to use CAM on submergence, even where water levels fluctuate within 24 hours. This allows continued photosynthesis in habitats where level fluctuations prevent access to atmospheric CO₂. It appears that stable conditions are most favourable for growth and dispersal, and that the spread of C. helmsii is mainly by the aerial form. Carbon uptake by P. tricarinatus under field conditions is compared with that of P. crispus to demonstrate differences in productivity associated with aqueous bicarbonate and atmospheric CO₂ use. P. tricarinatus uses HCO[subscript]3 - uptake to promote growth toward the surface, so that CO₂ can be accessed by floating leaves. Atmospheric contact provides access to light and removes the limitation of aqueous diffusive resistance to CO₂, thereby increasing photosynthetic capacity above that provided by submerged leaves. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1320380 / Thesis (Ph.D) -- University of Adelaide, School of Earth and Environmental Sciences, 2008
|
Page generated in 0.4207 seconds