• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Development of a Lubrication Pump for a Horizontally Mounted Air-Conditioning Compressor.

Gilbert, Kenneth T. 01 December 2003 (has links)
Horizontally mounted compressors offer the advantage of reduced height in central air-conditioning units but prove difficult to produce economically due to costs associated with the manufacture of acceptable lubrication systems for the compressors. This study develops an effective, affordable oil pump for use on a horizontal compressor. Concepts are proven through testing of prototype assemblies. Test results drive modifications for future prototypes, and prototypes demonstrating adequate performance are modified for ease of manufacture. Research in this study proves that the most suitable design results from a modification of a rotating vane pump. The pump’s modifications enable it to pump oil in the same direction, regardless of the direction of shaft rotation and to prime itself when totally dry of oil. However, extensive use of horizontal compressors hinges upon the development of a satisfactory suspension system.
2

Reduction of oil pump losses in automatic transmissions

Larsson, Camilla January 2014 (has links)
In the vehicle industry it is of great interest to reduce the emissions and lower the fuel consumption.Up to now a lot of effort has been put into increasing the efficiency of the engine,but it starts to get expensive to keep improving the engine. In this master thesis the transmissionand especially the oil supply to the transmission is investigated. An example of how the requirements of an oil pump can be decided is described. Knowingthe requirements different pumps may be adapted to meet the demands. The gear pumpused today is compared with a variable displacement pump and an electric pump. The gearpump is not possible to control, but the other two are. A few simple control strategies areintroduced. The strategies are implemented and the three pumps are used in the same drivecycle. It is shown that it is possible to reduce the energy that the pump requires if it isreplaced by a variable vane pump or an electric pump.
3

An Analysis of a Pressure Compensated Control System of an Automotive Vane Pump

Ryan P Jenkins (6331784) 10 June 2019 (has links)
<div>Pressure compensated vane pump systems are an attractive solution in many automotive applications to supply hydraulic power required for cooling, lubrication, and actuation of control elements such as transmission clutches. These systems feature variable displacement vane pumps which offer reductions in parasitic loads on the engine and in wasted hydraulic energy at high engine speeds when compared to traditional fixed displacement supply pumps. However, oscillations in a currently available pressure compensation system limits the achievable performance and therefore the application of this solution.</div><div>This dissertation presents the development and experimental validation of a lumped parameter model in MATLAB/Simulink of a current pressure compensated vane pump system for an automatic transmission oil supply application. An analysis of the performance of this system using the validated pump model and a developed black box control system model reveals that the low cost solenoid valve present in the control circuit to set the regulation pressure limits the achievable bandwidth to 1.84Hz and causes a significant time delay in the response. To address this limitation, as well as eliminate a non-minimum phase zero introduced by the case study’s control circuit architecture, an actively controlled electrohydraulic pressure compensation system is proposed. This proposed system is explored both experimentally and in simulation making use of the accuracy of the presented variable displacement vane pump model. Significant improvements in the achievable system performance are shown with both a simple PI control law (47% reduction in the pressure response time) and an advanced cascaded model following controller based on feedback linearization (58% reduction in the pressure response time). An analysis of these results reveals that implementing the proposed control system with a 5(L/min)/bar proportional valve with a 20Hz at ±100% (60Hz at ±50%) amplitude bandwidth and a PI control law is an economical path to achieving the best performance improvements for this automotive application.</div>
4

Prototypage virtuel de modules électro-hydrostatique equipés de pompes à palettes - Application presses à injecter / Virtual Prototyping of Electro-Hydrostatic Modules Equipped with Vane Pumps - Application to Injection Moulding Machines

Gnesi, Emanuele 21 September 2015 (has links)
Dans les dernierès années la politique des entreprises s'est concentrée sur la recherche de solutions industrielles plus écologiques pour réduire l'impact sur l'environnement et l'énergie consommée. La tendance s’est élargie aux machines stationnaires dans l'automatisation industrielle. Il inclut la technologie d’entraînement pour contrôler le mouvement séquentiel de plusieurs axes dans les presses à injecter. La conception des systèmes se focalise sur une approche conduisant à l’amélioration du rendement énergétique aussi bien que l’augmentation de la pression de service, la réduction de cycle de la machine et l’amélioration de sa répétabilité. Toutes ces exigences ont poussé la technologie d’entraînement à se développer en augmentant l'intérêt pour les modules électromécaniques et électro-hydrostatiques (EHM). Dans cette thèse, une solution innovatrice d'EHM est proposée qui associe un convertisseur, un servomoteur AC brushless et la pompe à palettes Parker. En détail, l'intérêt de recherche concerne le développement d'un modèle à niveau système de la pompe à palette. L'objectif principal est de permettre l'évaluation des pertes d'énergie de la pompe et la performance de module pendant des phases spécifiques du cycle de la machine : accélération, dépressurisation et phase de maintien de la pression. Premièrement analysée au moyen de l'approche analytique, la dynamique est alors évaluée par des modèles plus avancés basés sur le prototypage virtuel construit dans l'environnement LMS-AMESim. Les avantages concernant la prévision des performances du module EHM et sur l’évaluation des paramètres fondamentaux inconnus (comme la compressibilité du fluide et le contenu d’air dans le fluide) sont montrés par comparaison avec des résultats expérimentaux obtenus dans le laboratoire. Les phénomènes de la cavitation et d’aération sont aussi pris en compte pendant les phases d'accélération et des modèles sont ainsi développés pour prévoir les conditions de fonctionnement qui promeuvent ces phénomènes. La consommation d'énergie de l'EHM est alors analysée au moyen des modèles thermo-hydrauliques capables de déterminer les échanges de chaleur entre les composants de module et l'environnement. / In last years companies’ policy has been focusing on research of more eco-friendly solutions in order to reduce the environmental impact and the consumed energy. The trend has been affecting the stationary machinery in the industrial automation too. It includes the drive technology for motion control in the injection moulding machines. The design studies concern energy efficiency improvement, as well as increased service pressure, shorter cycle time and repeatability over a long period of time. All these requirements have led the drive technology to evolve by increasing the interest for the electro-mechanical and electro-hydrostatic modules (EHM). In this thesis an innovative solution of EHM is proposed that associates industrial inverter, AC brushless servo motor and fixed-displacement low-noise Parker vane pump. In detail, the research interest concerns the development of a system level model of the vane pump. The main objective is to enable assessing the pump energy losses and full module performance in specific phase of machine’s cycle: acceleration, depressurisation and holding pressure phases. Firstly analysed by means of analytical approach, dynamics are then evaluated through more advanced models based on virtual prototyping built in LMS-AMESim environment. The advantages on predicting the EHM performance and on estimating the unknown fundamental parameters (e.g. Bulk Modulus and fluid air content) are showed through comparison with experimental results obtained in laboratory. The cavitation/aeration phenomena are also taken into account during acceleration transients and models are thus developed in order to predict the operating conditions which promote these phenomena. Energy behaviour of the EHM is then analysed by means of thermal hydraulic models able to determine the heat exchanges between module components and environment.
5

Numerical Methods for Modeling Dynamic Features Related to Solid Body Motion, Cavitation, and Fluid Inertia in Hydraulic Machines

Zubin U Mistry (17125369) 12 March 2024 (has links)
<p dir="ltr">Positive displacement machines are used in various industries spanning the power spectrum, from industrial robotics to heavy construction equipment to aviation. These machines should be highly efficient, compact, and reliable. It is very advantageous for designers to use virtual simulations to design and improve the performance of these units as they significantly reduce cost and downtime. The recent trends of electrification and the goal to increase power density force these units to work at higher pressures and higher rotational speeds while maintaining their efficiencies and reliability. This push means that the simulation models need to advance to account for various aspects during the operation of these machines. </p><p dir="ltr">These machines typically have several bodies in relative motion with each other. Quantifying these motions and solving for their effect on the fluid enclosed are vital as they influence the machine's performance. The push towards higher rotational speeds introduces unwanted cavitation and aeration in these units. To model these effects, keeping the design evaluation time low is key for a designer. The lumped parameter approach offers the benefit of computational speed, but a major drawback that comes along with it is that it typically assumes fluid inertia to be negligible. These effects cannot be ignored, as quantifying and making design considerations to negate these effects can be beneficial. Therefore, this thesis addresses these key challenges of cavitation dynamics, body dynamics, and accounting for fluid inertia effects using a lumped parameter formulation.</p><p dir="ltr">To account for dynamics features related to cavitation, this thesis proposes a novel approach combining the two types of cavitation, i.e., gaseous and vaporous, by considering that both vapor and undissolved gas co-occupy a spherical bubble. The size of the spherical bubble is solved using the Rayleigh-Plesset equation, and the transfer of gas through the bubble interface is solved using Henry's Law and diffusion of the dissolved gas in the liquid. These equations are coupled with a novel pressure derivative equation. To account for body dynamics, this thesis introduces a novel approach for solving the positions of the bodies of a hydraulic machine while introducing new methods to solve contact dynamics and the application of Elasto Hydrodynamic Lubrication (EHL) friction at those contact locations. This thesis also proposes strategies to account for fluid inertia effects in a lumped parameter-based approach, taking as a reference an External Gear Machine. This thesis proposes a method to study the effects of fluid inertia on the pressurization and depressurization of the tooth space volumes of these units. The approach is based on considering the fluid inertia in the pressurization grooves and inside the control volumes with a peculiar sub-division. Further, frequency-dependent friction is also modeled to provide realistic damping of the fluid inside these channels.</p><p dir="ltr">To show the validity of the proposed dynamic cavitation model, the instantaneous pressure of a closed fluid volume undergoing expansion/compression is compared with multiple experimental sources, showing an improvement in accuracy compared to existing models. This modeling is then further applied to a gerotor machine and validated with experiments. Integrating this modeling technique with current displacement chamber simulation can further improve the understanding of cavitation in hydraulic systems. Formulations for body dynamics are tested on a prototype Gerotor and Vane unit. For both gerotor and vane units, comparisons of simulation results to experimental results for various dynamic quantities, such as pressure ripple, volumetric, and hydromechanical efficiency for multiple operating conditions, have been done. Extensive validation is performed for the case of gerotors where shaft torque ripple and the motion of the outer gear is experimentally validated. The thesis also comments on the distribution of the different torque loss contributions. The model for fluid inertia effects has been validated by comparing the lumped parameter model with a full three-dimensional Navier Stokes solver. The quantities compared, such as tooth space volume pressures and outlet volumetric flow rate, show a good match between the two approaches for varying operating speeds. A comparison with the experiments supports the modeling approach as well. The thesis also discusses which operating conditions and geometries play a significant role that governs the necessity to model such fluid inertia effects in the first place.</p>

Page generated in 0.073 seconds