• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 734
  • 541
  • 128
  • 75
  • 47
  • 28
  • 22
  • 18
  • 16
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • Tagged with
  • 1928
  • 654
  • 612
  • 199
  • 198
  • 192
  • 183
  • 179
  • 175
  • 152
  • 145
  • 140
  • 139
  • 119
  • 116
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
811

Pyrolytic carbon coated black silicon

Shah, Ali, Stenberg, Petri, Karvonen, Lasse, Ali, Rizwan, Honkanen, Seppo, Lipsanen, Harri, Peyghambarian, N., Kuittinen, Markku, Svirko, Yuri, Kaplas, Tommi 13 May 2016 (has links)
Carbon is the most well-known black material in the history of man. Throughout the centuries, carbon has been used as a black material for paintings, camouflage, and optics. Although, the techniques to make other black surfaces have evolved and become more sophisticated with time, carbon still remains one of the best black materials. Another well-known black surface is black silicon, reflecting less than 0.5% of incident light in visible spectral range but becomes a highly reflecting surface in wavelengths above 1000 nm. On the other hand, carbon absorbs at those and longer wavelengths. Thus, it is possible to combine black silicon with carbon to create an artificial material with very low reflectivity over a wide spectral range. Here we report our results on coating conformally black silicon substrate with amorphous pyrolytic carbon. We present a superior black surface with reflectance of light less than 0.5% in the spectral range of 350 nm to 2000 nm.
812

The Optimization of The Synthesis and Characterization of Vapor-Liquid-Solid Grown ZnO Nanowires

Fiefhaus, Silas R. 01 January 2016 (has links)
ZnO nanowires are a promising material with great semiconductor properties. ZnO nanowires were prepared by carbothermal reduction and vapor-liquid-solid growth mechanism. Altering a variety of parameters ranging from mole to mole ratio of ZnO to C all the way to gas flow rate was examined. The nanowires were then characterized and their morphology examined under a SEM to observe what effect the parameter had on the morphology of the nanowires. From the experiments and the parameters tested it was observed that in order to produce the highest quality straight nanowires one should use a mole to mole ratio of ZnO to C graphite of 1 to 3. With a dwell temperature and time of 900 °C for 3 hours. A gold seed catalyst of 4nm and a gas flow rate of 50 to 100sccm of Ar provides the straightest nanowires. Understanding the effect of each parameter on the morphology of ZnO nanowires is vital for the current research. This will only lead to further the research and provide a better understanding of the growth mechanism of these wires and how the production of specific wires with certain morphologic features and characteristics can be achieved.
813

Separation of 1-dodecanol and n-tetradecane through supercritical extraction.

Bonthuys, Gert Johannes Kotze 12 1900 (has links)
Thesis (MScEng (Process Engineering))--Stellenbosch University, 2008. / Developments in the field of liquid detergents and cosmetics have increased the demand for surfactants, processing aids and emollients. Alcohols are often used in liquid products where they serve as solvents for the detergent ingredients, adjust the viscosity and prevent product separation. Industrial scale oxygenation of the alkane to the alcohol is often incomplete, resulting in a significant amount of residual alkane. Application of these alcohols often requires a low residual alkane content and a post-production separation process is thus required. Traditional separation methods such as distillation and crystallisation are not technically viable as crossover melting and boiling points prevent the successful implementation of such processes and it is envisaged to use supercritical extraction to separate a mixture of n-alkanes and 1- alcohols. The project scope revolves around a product stream consisting of detergent range alcohols and corresponding n-alkanes that need to be separated. To model such a system, a typical detergent range alkane – alcohol feed with an average of 13 carbon atoms was selected, although a large number of the molecules have between 12 and 14 carbon atoms each. Generally the presence of the hydroxyl group as well as an increase in the number of carbon atoms decreases the solubility in supercritical solvents [17]-[19]. The most difficult separation will therefore be that of the alcohol with the least number of carbon atoms, that is 1-dodecanol (alcohol with 12 carbon atoms, CH3-(CH2)9-CH2-OH ) and the alkane with the most number of carbon atoms, that is n-tetradecane (alkane with 14 carbon atoms, CH3-(CH2)12-CH3 ). To model the system, it is assumed that the hydrocarbon backbone is linear and the alcohol is primary. Therefore 1-dodecanol and n-tetradecane are used. If it is possible to separate 1-dodecanol and ntetradecane with the use of supercritical fluids, it should be possible to separate an industrial mixture. The deliverables of this study are: a comparison of the high pressure solubility of n-tetradecane and 1-dodecanol with a selection of possible solvents; a selection of potential solvents to be tested on a pilot plant to confirm practical separation. From the literature and measured phase equilibria, all three solvents (carbon dioxide, ethane and propane) have the ability to distinguish (based on a difference in the pressure required for solubility) between 1-dodecanol and n-tetradecane. Both carbon dioxide and ethane have favourable temperature considerations. Propane has superior solubility of n-tetradecane and 1- dodecanol. Carbon dioxide demonstrates the highest selectivity. Pilot plant experiments have shown that both carbon dioxide and ethane have the ability to separate a 50-50% (mass percentage) mixture of 1-dodecanol and n-tetradecane. Both solvents perform at their best at low temperatures. Carbon dioxide shows the best results at low temperature and conditions of reflux. The highlight of pilot plant experiments with supercritical carbon dioxide is achieving a selectivity of 16.4 with the mass percentage of n-tetradecane at 5% and 82% for the bottoms and overheads product respectively. Very good separation is achieved using supercritical ethane as solvent even without reflux. Attention is drawn to pilot plant experiments where the selectivity is as high as 82 with the mass percentage of n-tetradecane in the bottoms and overheads product at 1% and 82% respectively. It is recommended to measure ternary phase equilibria for the system n-tetradecane, 1-dodecanol and carbon dioxide/ethane to establish the interaction between n-tetradecane and 1-dodecanol. The measured binary phase equilibrium data need to be expanded to include the vapour mass fraction composition in the isothermal solubility data.
814

Growth of Ultra-thin Ruthenium and Ruthenium Alloy Films for Copper Barriers

Liao, Wen, Bost, Daniel, Ekerdt, John G. 22 July 2016 (has links) (PDF)
We report approaches to grow ultrathin Ru films for application as a seed layer and Cu diffusion barrier. For chemical vapor deposition (CVD) with Ru3(CO)12 we show the role surface hydroxyl groups have in nucleating the Ru islands that grow into a continuous film in a Volmer-Weber process, and how the nucleation density can be increased by applying a CO or NH3 overpressure. Thinner continuous films evolve in the presence of a CO overpressure. We report an optimun ammonia overpressure for Ru nucleation and that leads to deposition of smoother Ru thin films. Finally, we report a comparison of amorphous Ru films that are alloyed with P or B and demonstrate 3-nm thick amorphous Ru(B) films function as a Cu diffusion barrier.
815

On the Hydroclimate of Southern South America: Water Vapor Transport and the Role of Shallow Groundwater on Land-Atmosphere Interactions

Martinez Agudelo, John Alejandro January 2015 (has links)
The present work focuses on the sources and transport of water vapor to the La Plata Basin (LPB), and the role of groundwater dynamics on the simulation of hydrometeorological conditions over the basin. In the first part of the study an extension to the Dynamic Recycling Model (DRM) is developed to estimate the water vapor transported to the LPB from different regions in South America and the nearby oceans, and the corresponding contribution to precipitation over the LPB. It is found that more than 23% of the precipitation over the LPB is from local origin, while nearly 20% originates from evapotranspiration from the southern Amazon. Most of the moisture comes from terrestrial sources, with the South American continent contributing more than 62% of the moisture for precipitation over the LPB. The Amazonian contribution increases during the positive phase of El Niño and the negative phase of the Antarctic Oscillation. In the second part of the study the effect of a groundwater scheme on the simulation of terrestrial water storage, soil moisture and evapotranspiration (ET) over the LPB is investigated. It is found that the groundwater scheme improves the simulation of fluctuations in the terrestrial water storage over parts of the southern Amazon. There is also an increase in the soil moisture in the root zone over those regions where the water table is closer to the surface, including parts of the western and southern Amazon, and of the central and southern LPB. ET increases in the central and southern LPB, where it is water limited. Over parts of the southeastern Amazon the effects of the groundwater scheme are only observed at higher resolution, when the convergence of lateral groundwater flow in local topographical depressions is resolved by the model. Finally, the effects of the groundwater scheme on near surface conditions and precipitation are explored. It is found that the increase in ET induced by the groundwater scheme over parts of the LPB induces an increase in near surface specific humidity, accompanied by a decrease in near surface temperature. During the dry season, downstream of the regions where ET increases, there is also a slight increase in precipitation, over a region where the model has a dry bias compared with observations. During the early rainy season, there is also an increase in the local convective available potential energy. Over the southern LPB, groundwater induces an increase in ET and precipitation of 13 and 10%, respectively. Over the LPB, the groundwater scheme tends to improve the warm and dry biases of the model. It is suggested that a more realistic simulation of the water table depth could further increase the simulated precipitation during the early rainy season.
816

Deposition and properties of Co- and Ru-based ultra-thin films

Henderson, Lucas Benjamin 21 June 2010 (has links)
Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165 °C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350 °C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt(0), yields cobalt-phosphorus films without any co-reactant. However, the molecule does not contain sufficient amounts of amorphizing agents to fully eliminate grain boundaries, and the resulting film is nanocrystalline. / text
817

Methods for modifying the physical and catalytic properties of surfaces

Flaherty, David William, 1980- 05 October 2010 (has links)
Catalysts can be significantly improved by modifying their structure or composition. Simple adaptations of the physical structure of a catalyst can give rise to changes in the chemical behavior, in part, due to alterations in the coordination of active sites. Modifications in the surface or bulk composition of a material have a profound impact on the chemistry that is promoted as a result of electronic and physical factors. Optimizing these qualities may enhance the catalyst’s activity, selectivity or stability. In this dissertation, we explore the application of two distinct approaches for modifying the chemical properties of catalytically active materials. Through the use of a broad array of techniques we quantify changes in critical properties such as physical-crystallographic structure; morphology, surface area and porosity; as well as catalytic activity, selectivity and stability. First, reactive ballistic deposition of metal atoms within a low pressure gas provides a unique opportunity for synthesizing thin films of a wide variety of materials. The morphology, structure, and porosity of the resulting material can be tailored through control of the deposition angle and substrate temperature. By conducting deposition perpendicular to the surface, a film can be grown with a dense, conformal structure. On the other hand, deposition at oblique angles results in high surface area, porous films comprised of regular arrays of nanocolumnar structures. Furthermore, variations in the deposition angle allow for the inclusion of under-coordinated sites which change the chemical activity of the surface. Improvements in the activity, selectivity and stability of transition metal catalysts can be made by alloying the catalyst with a second element. The formation of molybdenum carbide decreases the strength of chemisorption on the surface, with respect to molybdenum, and improves selectivity for the dehydrogenation of formic acid. Platinum is active for the water-gas shift reaction. However, this catalyst cannot operate at low temperatures due to CO poisoning and is susceptible to deactivation due to accumulation of carbonaceous deposits. The formation of a platinum-copper near-surface alloy dramatically modifies the interactions of the surface with CO, H₂O and H₂ which can enhance the performance of this catalyst for the water-gas shift reaction. / text
818

Synthesis gas production using non-thermal plasma reactors

Taylan, Onur 19 September 2014 (has links)
Today we face the formidable challenge of meeting the fuel needs of a growing population while minimizing the adverse impacts on our environment. Thus, we search for technologies that can provide us with renewable fuels while mitigating the emission of global pollutants. To this end, use of non-thermal plasma processes can offer novel methods for efficiently and effectively converting carbon dioxide and water vapor into synthesis gas for the production of renewable fuels. Particularly, non-thermal plasma technologies offer distinct advantages over conventional methods including lower operating temperatures, reduced need for catalysts and potentially lower manufacturing and operation costs. The non-thermal plasma reactors have been studied for ozone generation, material synthesis, decontamination, thruster for microsatellites, and biomedical applications. This dissertation focuses on producing synthesis gas using a non-thermal, microhollow cathode discharge (MHCD) plasma reactor. The prototype MHCD reactor consisted of a mica plate as a dielectric layer that was in between two aluminum electrodes with a through hole. First, electrical characterization of the reactor was performed in the self-pulsing regime, and the reactor was modeled with an equivalent circuit which consisted of a constant capacitance and a variable, negative differential resistance. The values of the resistor and capacitors were recovered from experimental data, and the introduced circuit model was validated with independent experiments. Experimental data showed that increasing the applied voltage increased the current, self-pulsing frequency and average power consumption of the reactor, while it decreased the peak voltage. Subsequently, carbon dioxide and water vapor balanced with argon as the carrier gas were fed through the hole, and parametric experiments were conducted to investigate the effects of applied voltage (from 2.5 to 4.5 kV), flow rate (from 10 to 800 mL/min), CO₂ mole fraction in influent (from 9.95% to 99.5%), dielectric thickness (from 150 to 450 [mu]m) and discharge hole diameter (from 200 to 515 [mu]m) on the composition of the products, electrical-to-chemical energy conversion efficiency, and CO₂-to-CO conversion yield. Within the investigated parameter ranges, the maximum H2/CO ratio was about 0.14 when H2O and CO₂ were dissociated in different reactors. Additionally, at an applied voltage of 4.5 kV, the maximum yields were about 28.4% for H2 at a residence time of 128 [mu]s and 17.3% for CO at a residence time of 354 [mu]s. Increasing residence time increased the conversion yield, but decreased the energy conversion efficiency. The maximum energy conversion efficiency of about 18.5% was achieved for 99.5% pure CO₂ at a residence time of 6 [mu]s and an applied voltage of 4.5 kV. At the same applied voltage, the maximum efficiency was about 14.8% for saturated CO₂ at a residence time of 12.8 [mu]s. The future work should focus on optimizing the conversion yield and efficiency as well as analyzing the temporal and spatial changes in the gas composition in the plasma reactor. / text
819

The preparation, properties and structure of poly-p-xylyene and its copolymers

Lightfoot, Philip Kenneth January 2000 (has links)
No description available.
820

Microscopic studies of doped and electron irradiated CVD diamond

Gilmore, Annette Clare January 1999 (has links)
No description available.

Page generated in 0.0356 seconds