• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1066
  • 463
  • 266
  • 142
  • 81
  • 58
  • 49
  • 41
  • 41
  • 37
  • 32
  • 20
  • 20
  • 14
  • 14
  • Tagged with
  • 2766
  • 354
  • 292
  • 264
  • 262
  • 255
  • 209
  • 191
  • 160
  • 154
  • 151
  • 134
  • 127
  • 126
  • 122
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Performance limits of linear variable reluctance motors in controlled linear motion applications

Ahmed, Raga 13 January 2014 (has links)
Improved actuator point-to-point positioning performance, as measured by settling time, has been demonstrated in the context of manufacturing automation applications such as circuit board assembly and other product-transfer operations. The control objective is to move a single mass in a single axis from a starting position to a target position following the fastest possible motion trajectory while meeting final-position accuracy requirements. The actuator's achievable force that is available for acceleration is the fundamental variable that determines optimal settling time. The actuator technology employed is the linear variable reluctance motor. Mathematical motor models and simulation programs have been developed to perform several tasks necessary for demonstrating improved actuator performance: (i) optimal commutation under force ripple constraints has been computed to determine ripple-specified force limits and to provide excitation waveforms necessary for force production, (ii) motion profiles for several positioning task scenarios have been generated based on computed ripple-specified force limits, (iii) state space integral position control simulations have been performed to evaluate the degree of success of the proposed relaxation of force ripple constraints in improving settling time and (iv) the computed settling times for positioning tasks have been examined in relation to the copper losses associated with them in order to assess the trade-off. It has been shown that higher force capability is achieved when force-ripple constraints, which have been customarily emphasized in positioning applications, are relaxed. The higher capability is exploited by adopting faster motion trajectories, which are then imposed under feedback control to achieve faster settling time. Improved force capability with relaxed ripple constraints is demonstrated by generating average force versus speed capability curves under ripple constraints ranging from minimal ripple to unconstrained ripple. Improved positioning performance, with relaxed ripple constraints and without violating the final-position accuracy specification, is demonstrated by computing and comparing settling time for multiple positioning tasks with trajectories based on both extremes of force capability, lowest (no-ripple) and highest (unconstrained-ripple) force limits. The results have been demonstrated for two LVR motor configurations: one motor configuration represents typical (switched) linear and rotary variable reluctance motors while the other exhibits features of both switched and synchronous varieties of variable reluctance motors.
372

Cataclysmic variables in globular clusters and low mass X-ray binaries

Machin, Graham January 1990 (has links)
No description available.
373

An intelligent controller for synchronous generators

Khor, Jeen Ghee January 1999 (has links)
No description available.
374

Modeling Three-dimensional Flow and Heat Transfer in Variable Surface Tension Two-phase Flows

Samareh Abolhassani, Babak 12 August 2013 (has links)
In the present study a parallel three dimensional Volume of Fluid (VOF) method is developed to simulate Marangoni force in immiscible fluids with variable surface tension. Conservation equations are solved based on cell-averaged one-field volume tracking scheme. Evaluating the convective term in the energy equation along the boundary between the fluids highly depends on the position and orientation of the interface; hence, using average cell values simply ignores the interface shape and leads to computational uncertainty. As a remedy to this issue, the original idea behind the volume tracking method is used not only to advect mass and momentum but also energy across cells. To verify the proposed algorithm, results are compared against theoretically predicted thermocapillary migration velocity of a droplet at the limit of zero Marangoni number. However, at relatively high Marangoni numbers, thermal boundary layers are very thin and challenging to resolve. To demonstrate the capabilities of the heat transfer module, simulations of a Fluorinert droplet moving in silicon oil under applied temperature gradient in microgravity are compared against the available experimental results and the migration velocity of the droplet are reported.
375

Modeling Three-dimensional Flow and Heat Transfer in Variable Surface Tension Two-phase Flows

Samareh Abolhassani, Babak 12 August 2013 (has links)
In the present study a parallel three dimensional Volume of Fluid (VOF) method is developed to simulate Marangoni force in immiscible fluids with variable surface tension. Conservation equations are solved based on cell-averaged one-field volume tracking scheme. Evaluating the convective term in the energy equation along the boundary between the fluids highly depends on the position and orientation of the interface; hence, using average cell values simply ignores the interface shape and leads to computational uncertainty. As a remedy to this issue, the original idea behind the volume tracking method is used not only to advect mass and momentum but also energy across cells. To verify the proposed algorithm, results are compared against theoretically predicted thermocapillary migration velocity of a droplet at the limit of zero Marangoni number. However, at relatively high Marangoni numbers, thermal boundary layers are very thin and challenging to resolve. To demonstrate the capabilities of the heat transfer module, simulations of a Fluorinert droplet moving in silicon oil under applied temperature gradient in microgravity are compared against the available experimental results and the migration velocity of the droplet are reported.
376

Investigating the use of variable fluorescence methods to detect phytoplankton nutrient deficiency

Majarreis, Joanna 06 1900 (has links)
Variable fluorescence of chlorophyll a (Fv/Fm), measured by pulse amplitude modulated (PAM) fluorometers, is an attractive target for phytoplankton-related water quality management. Lowered Fv/Fm is believed to reflect the magnitude of nutrient sufficiency or deficiency in phytoplankton. This rapid and specific metric is relevant to Lake Erie, which often experiences problematic Cyanobacteria blooms. It is unknown whether PAMs reliably measure phytoplankton nutrient status or if different PAMs provide comparable results. Water samples collected from Lake Erie and two Lake Ontario sites in July and September 2011 were analysed using alkaline phosphatase assay (APA), P-debt, and N-debt to quantify phytoplankton nutrient status and with three different PAM models (PhytoPAM, WaterPAM and DivingPAM) to determine Fv/Fm. The Lake Ontario, Lake Erie East and Central Basin sites were all N- and P-deficient in July, but only the East and Central Basin and one Lake Ontario site were P-deficient in September. The West Basin sites were P-deficient in July and one West Basin site and a river site were N-deficient in September. Between-instrument Fv/Fm comparisons did not show the expected 1:1 relationship. Fv/Fm from the PhytoPAM and WaterPAM were well-correlated with each other but not with nutrient deficiency. DivingPAM Fv/Fm did not correlate with the other PAM models, but correlated with P-deficiency. Spectral PAM fluorometers (PhytoPAM) can potentially resolve Fv/Fm down to phytoplankton group by additionally measuring accessory pigment fluorescence. The nutrient-induced fluorescent transient (NIFT) is the observation that Fv/Fm drops immediately and recovers when the limiting nutrient is reintroduced to nutrient-starved phytoplankton. A controlled laboratory experiment was conducted on a 2x2 factorial mixture design of P-deficient and P-sufficient Asterionella formosa and Microcystis aeruginosa cultures. Patterns consistent with published reports of NIFT were observed for P-deficient M. aeruginosa in mixtures; the pattern for A. formosa was less clear. This thesis showed that Fv/Fm by itself was not a reliable metric of N or P deficiency and care must be taken when interpreting results obtained by different PAM fluorometers. NIFT analysis using spectral PAM fluorometers may be able to discriminate P-deficiency in M. aeruginosa, and possibly other Cyanobacteria, in mixed communities.
377

Conservation and ecology of bryophytes in partially harvested boreal mixed-wood forests of west-central Canada

Caners, Richard T. 11 1900 (has links)
This thesis examined the efficacy of residual forest structure for the preservation and recovery of bryophytes five to six years after partial canopy harvest in boreal mixed-wood forests of northwestern Alberta, Canada. Bryophytes were sampled in two forest types that differed in pre-harvest abundance of broadleaf (primarily Populus tremuloides Michx. and P. balsamifera L.) and coniferous (primarily Picea glauca (Moench) Voss) canopy trees. In Chapter 2, epiphytic bryophytes growing on aspen (P. tremuloides) were characterized by species viability and nearest-neighbour relationships. Epiphyte assemblage structure showed increasing impact with declining retention owing to degradation of growing conditions for species on trees. Chapter 3 provided an analysis of species richness and abundance patterns in relation to residual canopy structure. Bryophytes generally benefitted from higher canopy retention; however, epixylic and epiphytic species were more sensitive to partial harvesting than species on other substrates, and liverworts were more sensitive than mosses. Liverworts exhibited higher among-site differences in richness as retention declined, which partly resulted from increasing numbers of local species extinctions. In an analysis of species-environment relations in partially-harvested forests in Chapter 4, forest moisture was reduced with any degree of harvesting in both forest types. Lower canopy retention and forest moisture levels were associated with reduced abundances of species with particular biological traits, such as limited reproduction and dispersal capacities. Their re-establishment after harvesting may be impeded because of biological and environmental limitations. Coniferous-dominated forests supported higher abundances of liverworts and species with greater moisture requirements than did mixed-wood broadleaf-coniferous forests, and are potentially important refuges of bryophyte source populations. Chapter 5 examined the capacity for bryophyte species to germinate from diaspore banks in forest soils. Species germinated readily from mineral soil samples obtained from harvested sites, including several perennials characteristic of intact forests. Diaspore banks may serve as a persistent source for species colonization at post-disturbance sites, but only under appropriate growing conditions and not for species that were most sensitive to harvesting. Overall, both amount and composition of forest structure retained after partial harvesting are important management considerations for ensuring conservation of the wide variety of bryophyte species in mixed-wood landscapes. / Conservation Biology
378

Bayesian Joint Modeling of Binomial and Rank Response Data

Barney, Bradley 2011 August 1900 (has links)
We present techniques for joint modeling of binomial and rank response data using the Bayesian paradigm for inference. The motivating application consists of results from a series of assessments on several primate species. Among 20 assessments representing 6 paradigms, 6 assessments are considered to produce a rank response and the remaining 14 are considered to have a binomial response. In order to model each of the 20 assessments simultaneously, we use the popular technique of data augmentation so that the observed responses are based on latent variables. The modeling uses Bayesian techniques for modeling the latent variables using random effects models. Competing models are specified in a consistent fashion which easily allows comparisons across assessments and across models. Non-local priors are readily admitted to enable more effective testing of random effects should Bayes factors be used for model comparison. The model is also extended to allow assessment-specific conditional error variances for the latent variables. Due to potential difficulties in calculating Bayes factors, discrepancy measures based on pivotal quantities are adapted to test for the presence of random effects and for the need to allow assessment-specific conditional error variances. In order to facilitate implementation, we describe in detail the joint prior distribution and a Markov chain Monte Carlo (MCMC) algorithm for posterior sampling. Results from the primate intelligence data are presented to illustrate the methodology. The results indicate substantial paradigm-specific differences between species. These differences are supported by the discrepancy measures as well as model posterior summaries. Furthermore, the results suggest that meaningful and parsimonious inferences can be made using the proposed techniques and that the discrepancy measures can effectively differentiate between necessary and unnecessary random effects. The contributions should be particularly useful when binomial and rank data are to be jointly analyzed in a parsimonious fashion.
379

Modeling Variable Viscosity Forced and Free Convection in Porous Media

Kamel Hooman Unknown Date (has links)
This thesis addresses modeling transport phenomena in porous media with special attention being paid to convective characteristics of variable viscosity fluids in a homogeneous and isotropic medium. Two different categories of flows, with totally different driving forces, are considered being forced and free convection (both side and bottom heating, for a square enclosure, are studied). To account for property variation, the density is modeled by an Oberbeck–Boussinesq approximation while the viscosity is modeled by an exponential function. The limitations of the previous work, addressing the issue, are discussed in detail and improvements, in terms of thermo-hydraulic performance of the system are suggested. Dealing with the global aspects of the problem, the two major methods being the reference temperature and the property ratio approach are implemented. For natural convection problems, the former method is used; while for forced convection the latter is undertaken. New correlations, which are proved to be more accurate, are proposed for both forced and free convection problems. Besides, closed form solutions are reported for some cases of constant and variable viscosity. Convection visualization is also studied in detail where the concept of Energy Flux Vectors is put forward along with the application of heatlines and energy streamlines. It was mathematically shown that in two-dimensional space heatlines and energy streamlines, which were invented independently, are the same as each other. Moreover, the newly developed concept, energy flux vectors serve as a new tool for convection visualization with the main advantage that this new technique, unlike heatlines and energy streamlines, does not require further (and sometimes complicated) numerical analysis in addition to solving momentum and thermal energy equations. This, in its turn, reduces the time and computer resources required to see the flow of energy. Finally, in Chapter 7, the summary of the work along with the conclusions are presented. Finally, recommendations for future studies are put forward.
380

Modeling Variable Viscosity Forced and Free Convection in Porous Media

Kamel Hooman Unknown Date (has links)
This thesis addresses modeling transport phenomena in porous media with special attention being paid to convective characteristics of variable viscosity fluids in a homogeneous and isotropic medium. Two different categories of flows, with totally different driving forces, are considered being forced and free convection (both side and bottom heating, for a square enclosure, are studied). To account for property variation, the density is modeled by an Oberbeck–Boussinesq approximation while the viscosity is modeled by an exponential function. The limitations of the previous work, addressing the issue, are discussed in detail and improvements, in terms of thermo-hydraulic performance of the system are suggested. Dealing with the global aspects of the problem, the two major methods being the reference temperature and the property ratio approach are implemented. For natural convection problems, the former method is used; while for forced convection the latter is undertaken. New correlations, which are proved to be more accurate, are proposed for both forced and free convection problems. Besides, closed form solutions are reported for some cases of constant and variable viscosity. Convection visualization is also studied in detail where the concept of Energy Flux Vectors is put forward along with the application of heatlines and energy streamlines. It was mathematically shown that in two-dimensional space heatlines and energy streamlines, which were invented independently, are the same as each other. Moreover, the newly developed concept, energy flux vectors serve as a new tool for convection visualization with the main advantage that this new technique, unlike heatlines and energy streamlines, does not require further (and sometimes complicated) numerical analysis in addition to solving momentum and thermal energy equations. This, in its turn, reduces the time and computer resources required to see the flow of energy. Finally, in Chapter 7, the summary of the work along with the conclusions are presented. Finally, recommendations for future studies are put forward.

Page generated in 0.0561 seconds