11 |
Pressure Pulse Generation with Energy RecoveryRotthäuser, Siegfried, Hagemeister, Wilhelm, Pott, Harald January 2016 (has links)
The Pressure Impulse test-rig uses the principal energetic advantages of displacementcontrolled systems versus valve-controlled systems. The use of digital-control technology enables a high dynamic in the pressure curve, according to the requirements of ISO6605. Accumulators, along with inertia, make energy recovery possible, as well as, enabling the compression energy to be re-used. As a result of this, there is a drastic reduction in operating costs. A simulation of the system before starting the project allows the development risks to be calculated and the physically achievable performance limits to be shown.
|
12 |
Damping strategies for energy efficient pressure controllers of variable displacement pumpsSchoemacker, Florian, Fischer, Felix, Schmitz, Katharina 25 June 2020 (has links)
In hydraulic-mechanically controlled variable displacement pumps, the actual pump controller produces additional power losses. Due to the low damping coefficients of all pump controller’s components, hydraulic-mechanically pressure controlled pumps use to oscillate while adjusting the pressure level in the hydraulic system. In several state-of-the-art variable pump controllers, a damping orifice connects the control actuator’s displacement chamber with the reservoir. This bypass dampens the movement of the control actuator but also leads to bypass losses during steady-state operation of the pump. A new concept for damping via feedback loops avoiding bypass losses is presented in t his paper.
|
13 |
Design and Simulation of Digital Radial Piston Pumps Using Externally Actuated Cam SystemsKeith Scott Pate (13174803) 29 July 2022 (has links)
<p>Energy conservation is a growing topic of research within various fields. Digital Hydraulics is a division of fluid power that focuses on using on/off technology to improve the performance and efficiency of fluid power systems. One significant benefit of Digital Hydraulics is that it has enabled additional control over fluid power systems, which helps achieve component and system level improvements. Conventional radial and inline piston pumps use positive sealing valves, which mitigate leakage losses, compared to port plates commonly seen in variable displacement pumps. By using digitally controlled positive sealing valves on radial and inline piston pumps, leakage losses can be mitigated to develop a more efficient variable displacement pump. This work focuses on the design, modeling, and simulation of a mechanically actuated valving system developed for a commercially available radial piston pump. The design uses a ball screw actuation method to phase the cam during operation, changing the displacement. Using a modeling and simulation software, GT-SUITE, a simulation model was created for the digital pump that shows close correlation to the manufacturer’s data at high pressure. The parameters simulated, 50 – 200 bar, showed that the system could achieve a peak efficiency drop of approximately 11.0% from 87.0% to 76.0% from 100 – 25% displacement simulated at 200 bar and 500rpm. Compared to a typical variable displacement axial piston pump unit, the digital pump showed increased efficiencies across the bandwidth of 35-83% displacement, with a lower overall drop in efficiency across most of its operating conditions. In the comparison used, the pump is outside of its operating range and has not been optimized; thus, the simulation model created in this thesis will be used in the future to optimize the system and evaluate the system's potential performance and feasibility for future prototyping and testing as a proof of concept. </p>
|
Page generated in 0.0756 seconds