• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Adaptive Sliding Mode Controllers for Perturbed MIMO Systems

Chien, Shih-Hsiang 18 January 2008 (has links)
In this dissertation three robust control strategies are proposed for a class of multi-input multi-output dynamic systems with matched or mismatched perturbations. Firstly, an adaptive variable structure observer and controller are introduced for solving the regulation problems, where some state variables are not measurable. By utilizing adaptive mechanisms in the design of sliding mode controller, one can enable the controlled systems not only to generate a reaching mode in finite time, but also to suppress the mismatched perturbations during the sliding mode. Secondly, the design of adaptive sliding mode controllers with application to robot manipulators is presented to solve the tracking problems. The dynamic equations of the controlled systems contain a perturbed leading coefficient matrix and can be either positive definite or negative definite. The asymptotical stability of the controlled systems will be attained if the proposed control scheme is employed. Thirdly, a design methodology of adaptive sliding mode controller based on T-S fuzzy model is proposed to solve tracking problems. It is shown that the trajectories of the controlled systems can be driven into a designated sliding surface in finite time, and the property of asymptotical stability is also guaranteed. All these three control schemes are designed by means of Lyapunov stability theorem. Each control scheme contains three parts. The first part is designed for eliminating measurable feedback signals. The second part is used for adjusting the convergent rate of state variables (or tracking errors) of the controlled system. The third part is the adaptive control mechanism, which is used to adapt some unknown constants of the least upper bounds of perturbations, so that the knowledge of the least upper bounds of matched or mismatched perturbations are not required. Several numerical examples and an application of controlling robot manipulator are demonstrated for showing the feasibility of the proposed control methodologies.

Page generated in 0.1013 seconds