Spelling suggestions: "subject:"variablespeed motor drives"" "subject:"variable.based motor drives""
1 |
Analysis and Design of a Novel E-Core Common-Pole Switched Reluctance MachineLee, Cheewoo 26 March 2010 (has links)
In this dissertation, a novel two-phase switched reluctance machine (SRM) with a stator comprised of E-core structure having minimum stator core iron is presented for low-cost high-performance applications. In addition, three new magnetic structures for the E-core SRM comprising two segmented stator cores or a monolithic stator core are proposed for good manufacturability, mechanically robustness, ease of assembly, and electromagnetic performance improvement. Each E-core stator in the segmented structure has three poles with two small poles at the ends having windings and a large center pole containing no copper windings. The common stator pole at the centers in the segmented E-core is shared by both phases during operation. Other benefits of the common poles contributing to performance enhancement are short flux paths, mostly flux-reversal-free-stator, constant minimum reluctance around air gap, and wide pole arc equal to one rotor pole pitch. Therefore, two additional common poles in the monolithic E-core configuration are able to significantly improve efficiency due to more positive torque and less core loss by the unique design. Using a full MEC analysis, the effect of the common-pole structure on torque enhancement is analytically verified. Efficiency estimated from the dynamic simulation is higher by 7% and 12% at 2000 rpm and by 3% and 7 % at 3000 rpm for the segmented and single-body SRMs, respectively, compared to a conventional SRM with four stator poles and two rotor poles. The new E-core SRMs are suitable for low-cost high-performance applications which are strongly cost competitive since all the new E-core SRMs have 20% cost savings on copper and the segmented E-core SRMs have 20% steel savings as well. Strong correlation between simulated and experimentally measured results validates the feasibility of the E-core common-pole structure and its performance. A simple step-by-step analytical design procedure suited for iterative optimization with small computational effort is developed with the information of the monolithic E-core SRM, and the proposed design approach can be applied for other SRM configurations as well. For investigating thermal characteristics in the two-phase single-body E-core SRM, the machine is modeled by a simplified lumped-parameter thermal network in which there are nine major parts of the motor assembly. / Ph. D.
|
Page generated in 0.0824 seconds