• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the lattice of varieties of almost-idempotent semirings / Über den Varietätenverband fast-idempotenter Halbringe

Michalski, Burkhard 30 January 2018 (has links) (PDF)
Die Arbeit beschäftigt sich mit fast-idempotenten Halbringen, die eine Verallgemeinerung der idempotenten Halbringe darstellen. Es werden - ausgehend von Halbringen mit zwei Elementen - bis auf isomorphe Bilder sämtliche fast-idempotente Halbringe mit drei Elementen generiert, diejenigen Halbringe, die schon in durch zweielementige Halbringe erzeugten Varietäten liegen, aussortiert und die in den verbleibenden elf Halbringen gültigen Gleichungen charakterisiert. Der Verband L(IA3) der Varietäten generiert durch fast-idempotente Halbringe mit maximal drei Elementen wird mit Hilfe eines Kontexts mit 21 Halbringen als Attribute und 28 trennenden Gleichungen als Objekte vollständig bestimmt und besteht aus 19.901 Varietäten. Im Anschluss richtet sich der Fokus der Arbeit auf den Verband L(IA) der fast-idempotenten Halbringe. In diesem werden insbesondere die Varietät V = [xy = yx, xy = xy+x] und deren Untervarietäten V_k = [x^k = x^(k+1)], k >= 2; untersucht. Für all diese Varietäten wird jeweils eine Konstruktionsmethode für eine abzählbare Kette an Untervarietäten der gegebenen Varietät eingeführt und somit schließlich gezeigt, dass der Verband L(IA) aus mindestens abzählbar unendlich vielen Varietäten besteht.
2

On the lattice of varieties of almost-idempotent semirings

Michalski, Burkhard 01 December 2017 (has links)
Die Arbeit beschäftigt sich mit fast-idempotenten Halbringen, die eine Verallgemeinerung der idempotenten Halbringe darstellen. Es werden - ausgehend von Halbringen mit zwei Elementen - bis auf isomorphe Bilder sämtliche fast-idempotente Halbringe mit drei Elementen generiert, diejenigen Halbringe, die schon in durch zweielementige Halbringe erzeugten Varietäten liegen, aussortiert und die in den verbleibenden elf Halbringen gültigen Gleichungen charakterisiert. Der Verband L(IA3) der Varietäten generiert durch fast-idempotente Halbringe mit maximal drei Elementen wird mit Hilfe eines Kontexts mit 21 Halbringen als Attribute und 28 trennenden Gleichungen als Objekte vollständig bestimmt und besteht aus 19.901 Varietäten. Im Anschluss richtet sich der Fokus der Arbeit auf den Verband L(IA) der fast-idempotenten Halbringe. In diesem werden insbesondere die Varietät V = [xy = yx, xy = xy+x] und deren Untervarietäten V_k = [x^k = x^(k+1)], k >= 2; untersucht. Für all diese Varietäten wird jeweils eine Konstruktionsmethode für eine abzählbare Kette an Untervarietäten der gegebenen Varietät eingeführt und somit schließlich gezeigt, dass der Verband L(IA) aus mindestens abzählbar unendlich vielen Varietäten besteht.

Page generated in 0.0479 seconds