1 |
Statistical estimation of variogram and covariance parameters of spatial and spatio-temporal random procesesDas, Sourav January 2011 (has links)
In this thesis we study the problem of estimation of parametric covariance and variogram functions for spatial and spatio- temporal random processes. It has the following principal parts. Variogram Estimation: We consider the "weighted" least squares criterion of fitting a parametric variogram function to second order stationary geo-statistical processes. Two new weight functions are investigated as alternative to the commonly used weight function proposed by Cressie (1985). We discuss asymptotic convergence properties of the sample variogram estimator and estimators of unknown parameters of parametric variogram functions, under a "mixed increasing domain" sampling design as proposed by Lahiriet al. While empirical results of Mean Square Errors, for parameter estimation, obtained using both the proposed functions are found to be comparatively better, we also theoretically establish that under general conditions one of the proposed weight functions give estimates with better asymptotic effciency. Spatio-Temporal Covariance Estimation: Over the past decade, there have been some important advances in methods for constructing valid spatiotemporal covariance functions; but not much attention has been given - so far - on methods of parameter estimation. In this thesis we propose a new frequency domain approach to estimating parameters of spatio-temporal covariance functions. We derive asymptotic strong consistency properties of the estimators using the concept of stochastic equicontinuity. The theory is illustrated with a simulation. Non-Linearity of Geostatistical Data: Linear prediction theory for spatial data is well established and substantial literature is available on the subject. Relatively less is known about non-linearity. In our final and ongoing, research problem we propose a non-linear predictor for geostatistical data. We demonstrate that the predictor is a function of higher order moments. This leads us to construct spatial bispectra for parametric third order moments.
|
2 |
An analysis of Texas rainfall data and asymptotic properties of space-time covariance estimatorsLi, Bo 02 June 2009 (has links)
This dissertation includes two parts. Part 1 develops a geostatistical method
to calibrate Texas NexRad rainfall estimates using rain gauge measurements. Part 2
explores the asymptotic joint distribution of sample space-time covariance estimators.
The following two paragraphs briefly summarize these two parts, respectively.
Rainfall is one of the most important hydrologic model inputs and is considered
a random process in time and space. Rain gauges generally provide good quality
data; however, they are usually too sparse to capture the spatial variability. Radar
estimates provide a better spatial representation of rainfall patterns, but they are
subject to substantial biases. Our calibration of radar estimates, using gauge data,
takes season, rainfall type and rainfall amount into account, and is accomplished
via a combination of threshold estimation, bias reduction, regression techniques and
geostatistical procedures. We explore a varying-coefficient model to adapt to the
temporal variability of rainfall. The methods are illustrated using Texas rainfall data
in 2003, which includes WAR-88D radar-reflectivity data and the corresponding rain
gauge measurements. Simulation experiments are carried out to evaluate the accuracy of our methodology. The superiority of the proposed method lies in estimating total
rainfall as well as point rainfall amount.
We study the asymptotic joint distribution of sample space-time covariance esti-mators of stationary random fields. We do this without any marginal or joint distri-butional assumptions other than mild moment and mixing conditions. We consider
several situations depending on whether the observations are regularly or irregularly
spaced, and whether one part or the whole domain of interest is fixed or increasing.
A simulation experiment illustrates the asymptotic joint normality and the asymp-
totic covariance matrix of sample space-time covariance estimators as derived. An
extension of this part develops a nonparametric test for full symmetry, separability,
Taylor's hypothesis and isotropy of space-time covariances.
|
Page generated in 0.0931 seconds