• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 87
  • Tagged with
  • 175
  • 175
  • 175
  • 173
  • 162
  • 162
  • 110
  • 52
  • 11
  • 11
  • 11
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Conditioning of CO2 coming from a CO2 capture process for transport and storage purposes

Bilsbak, Vegard January 2009 (has links)
<p>Compression and purification processes are considered for CO2 coming from the three different capture methods. By using the simulation tool Pro/II these processes are further optimized.</p>
52

Wet Gas Compression : Impeller Rig

Amundsen, Siren Carstens January 2009 (has links)
<p>Wet gas compression technology is of great value to the oil and gas industry for boosting of unprocessed well stream and to reduce investment costs related to equipment and personnel. The growing interest in wet gas compression leads to a general request for accurate performance calculation procedures and proper measurement techniques for multiphase flow metering in compressors. An impeller rig for examination of single-phase and multiphase performance and aerodynamic stability is under construction at the test facility at NTNU. The construction of the compressor rig is behind time due to late deliveries of the compressor components and instrumentation. The performance calculations are therefore based upon one compressor test conducted with dry gas at part-load. The thermodynamic equation of state for ambient air is verified to be consistent with the ideal gas law in the compressor pressure and temperature range. The calculated polytropic performance is calculated with ideal gas assumptions and compared to values estimated by PRO/II. By analyzing the results the sensitivity of the calculation procedures is identified and the suitability for the ideal polytropic performance calculations is validated for the actual compressor test and operating range. A sensitivity analysis is conducted in order to determine the effect of measurement uncertainties on performance calculations. Due to the low pressures involved for the compressor test, the performance calculation procedures are highly sensitive to uncertainties in the pressure measurements. Uncertainties in the temperature measurements will only slightly influence the polytropic head, but have great influence on the polytropic efficiency. The efficiency and operating range of a compressor are constrained by aerodynamic instabilities. This thesis describes the different flow phenomena associated with compressor instability and presents recommendations for suitable instrumentation and measuring techniques. Various visualization techniques are in addition evaluated to determine the suitability for multiphase compressors. Dynamic pressure transducers installed in the inlet and discharge piping are recommended for detection of pressure pulsation throughout the compressor system. Unsteady internal pressure measurements can be obtained from circumferentially distributed pressure transducers at various locations within the compressor components. Vibration probes installed at each end of the rotor are recommended for the vibration measurements. By analyzing the frequency spectrum for the pressure fluctuation and radial vibrations one can identify the type of instability phenomenon that occur. Laser measurement techniques are recommended for the flow visualization in order to obtain information on the main features of the multiphase flow field.</p>
53

Gas cleaning with Granular Filters

Natvig, Ingunn Roald January 2007 (has links)
The panel bed filter (PBF) is a granular filter patented by A. M. Squires in the late sixties. PBFs consist of louvers with stationary, granular beds. Dust is deposited in the top layers and on the bed surface when gas flows through. PBFs are resistant to high temperatures, variations in the gas flow and hot particles. The filter is cleaned by releasing a pressure pulse in the opposite direction of the bulk flow (a puff back pulse). A new louver geometry patented by A. M. Squires is the filter tray louvers. The new design is believed to reduce the pressure drop and the number of louvers, and to make the filter more compact. We have designed and built a laboratory scale PBF with filter tray louvers based on the patent. Experiments with the prototype show that the new louver can be cleaned with a puff back pulse. A PBF system for a hypothetical biomass combustion plant has been designed. The heat from the flue gas will be used for district heating. The proposed PBF system design consists of double-sided modules with 46 filter tray louvers on top of each other. Five modules are mounted together in module columns, sharing the same clean gas duct and puff back pipe. The granular medium chosen is Sintered Bauxite 20/40 (SB). The module columns are placed in an enveloping house. SB and dust fall into bins in the bottom of the enveloping house during puff back cleaning. A vacuum pneumatic conveying system brings the dust and SB to the top of the filter. Dust and SB are separated in a sieve. Dust is deposited, and SB is transported back to the modules. NTNU is currently involved in the BioSOFC project. The objective of this project is to increase efficiency in energy production from biomass by using producer gas from a biomass gasification plant in a Solid Oxide Fuel Cell. Field tests will be performed at a plant in Güssing, Austria. A PBF will be used for gas filtration. The operating temperature will be 500 °C to avoid tar condensation. We have performed heating experiments on the BioSOFC filter system. The results were not satisfactory, as the temperature in the filter ranged from 384 to 625 °C. The filter system was due to be shipped, and new tests could not be performed. This work proposes that modifications to the heating cable circuits are made, and new heating tests are performed before the field testing.
54

Modeling of a Microbial Fuel Cell

Calder, Michael Alexander January 2007 (has links)
It is clear that society worldwide must immediately begin to mitigate its environmental damage in order to sustain life on Earth. In this regard, researchers all over the global are exploring new energy efficient alternatives to power everything from cars to cell phones. The following brief describes research conducted on Microbial Fuel Cells (MFC) and its ability to utilize bacteria to produce electricity from biological masses for low energy consumer products While structurally the MFC is very similar to a Conventional Fuel Cell, the two systems have inherent differences that change the reactions, inputs and energy output. Currently, we have found MFC to produce only a fraction of the power (~1A/cm2 vs ~1mA/ cm2 ) produced by a conventional CFC, however, its versatility keeps MFCs as a promising fuel source potential. A Multi-disciplinary University Research Initiative has organized to examine and test the potential of MFC. The team is divided into three teams based on industry domains and expertise: microbiology, chemistry and electrochemistry, and engineering and modeling. The followin master thesis research was part of the engineering and modeling team lead by Professor Ronney XX. The goal of our team was to construct a first version of a computational model simulating the MFC system. The computational model is be based on combustion kinetics and a diffusion-reaction system theories, and is manipulated to immatate a biological system that can maximize its energy output. The model has been constructed in Fluent. Starting out with a 1D model, and consequently moved on to a 2D version. The final model is a diffusion-reaction system with 6 different species, a 3-step reaction, including a bacterial anodic oxidation, a cathodic reduction, and a possibility of taking into account a counteracting anodic reaction for oxygen crossover through the membrane. While the model has been proven to correlate well with lab tested experimental results, the team will continue to identify conditions to maximize the MFC’s efficiency and energy output.
55

Vertical Stratification in a Ventilated Space : Comparison of Theoretical Predictions to Experimental Results from a Water Scale Model

Myrtrøen, Ole-Jørgen Feiring January 2007 (has links)
This study investigates the behaviour of a vertically distributed source of buoyancy on the vertical stratification in a ventilated space, an important factor for determining indoor comfort when using displacement ventilation. A new theory describing the behaviour of this buoyancy source in a ventilated space was presented previous to this work, but experimental results were required in order to validate the theoretical and numerical modelling. The behaviour of this source of buoyancy on the stratification in a ventilated space is studied for a mechanically ventilated at steady-state and for a linearly stratified environment using salt water in a water scale model. The stratifications were measured using a traversing conductivity probe and then compared to theoretical predictions by numerically solving the plume equations for the new theory in Fortran. High quality measurements were produced, showing excellent repeatability for stratification measurements at steady-state with deviations of less than 1 %. Moreover, the linear stratifications had linear best fits up to R2 = 0.999 by using the double-bucket method. The theoretical predictions of the influence of the vertically distributed source correlate quantitatively with the mechanically ventilated experiments, showing good agreement to the strength of the ambient stratification, the position of the first front and the ventilation flow rate. The experimental results for the determination of the height of a horizontal intrusion of fluid into the linearly stratified environment were severely affected by the occurrence of gravity current at the ceiling of the ventilated space and comparisons to the new theory was not successful because of this. A two-layer stratification is observed where the upper layer had a weakly stratified density profile, instead of the multi-layer stratification predicted by previous researchers in their theoretical model. This discrepancy is due to smoothing and vertical turbulent mixing in the water scale model. It is recommended that the characteristic of the membrane that is used in the water scale model is investigated in relation to the gravity currents for future research.
56

Energy System for LNG Plant Based on Imported Power

Bomstad, Fredrik, Nordland, Kjetil January 2009 (has links)
It has been proposed to supply heat and power to Snøhvit Train II (STII) from onsite heat generation based on natural gas and power import from the power grid. Without carbon capture and storage, greenhouse gas (GHG) emissions from the combustion of natural gas in furnaces make a considerable contribution to the global warming potential (GWP) of this energy system. Depending on the interpretation of marginal power consumption, the power import also contributes to and increases this system’s GWP. A recent SINTEF report claimed that European CO2 emissions are reduced with additional renewable power production in Norway, and it has been suggested to invest in wind power in order to completely offset the GWP of the STII energy system. This paper provides investment analyses for the proposed energy system. A scenario approach was used, with six different scenarios covering two dimensions. The first dimension is the origin of the grid power, with three different interpretations of marginal power representing Cases A, B and C. The other dimension is the STII train size, with two different sizes being analyzed, namely 50 % and 70 % of the Snøhvit Train I design capacity. The proposed energy system was also analyzed with respect to security of supply. Improved reliability and transmission capacity, together with a stable, positive power balance, make a good foundation for security of power supply. The power demand of the two train sizes was estimated to 101 MW and 141 MW, with corresponding heat demand of 94 MW and 131 MW. These estimates were based on a combination of HYSYS simulations and data provided by StatoilHydro (SH), and provided input for both the GWP analysis and the investment analysis. The GWP impact of each scenario determined the share of power import from the grid that would have to be replaced by energy harnessed from wind. The applied capacity factor was 39.6 %, and the rated wind power requirement for the six different scenarios ranged from 101 MW for the A.50 scenario to 257 MW for the C.70 scenario. The break even (BE) energy prices were calculated for each of the six scenarios analyzed. If the power consumption is based solely on power import, with zero StatoilHydro (SH) share of grid reinforcements and no SH development of wind power, the BE power price would be 466 NOK/MWh. The inclusion of wind power development as part of the investment will increase the BE power price by up to 33 NOK/MWh. The additional SH share of grid reinforcement will add 86 NOK/MWh for the 50 % STII or 62 NOK/MWh for the 70 % STII. It was shown that the investment in wind power to offset the GWP of the energy system might also be a reasonable way of hedging against increases in the market price of electricity. It was found that the share of STII power demand that is provided by wind power is one of the parameters that have the least influence on the project’s net present value (NPV). A high share of wind power is an inexpensive investment in improving reputation and predictability of energy price.
57

Reversible R744 (CO2) heat pumps applied in public trains in Norway

Christensen, Øystein January 2009 (has links)
This report presents opportunities for use of CO2 as refrigerant in the air conditioning system in public trains. The CO2 system shall provide cooling in the summer and heating in the winter. CO2 is a natural fluid which means that it exists naturally in the biosphere. Today 75% of the air conditioning systems in trains use R134a as refrigerant. The GWP of R134a is 1410 while CO2 used as refrigerant is 0. A replacement from R134a to CO2 gives possibilities of large environmental savings. Three different technical system solutions of the heat pump are presented, each with its own method of provide cooling and heating. Solution I changes between cooling and heating by change the direction of the refrigerant flow through the system. Solution II changes between cooling and heating by change the configuration of the air streams through the heat exchangers. In Solution III the refrigerant flow direction and the configurations of the air streams is always the same. The whole heat pump is placed on a rotatable unit and the change between cooling and heating is done by rotating the whole heat pump 180°. In all the three technical solutions there are separated heat exchangers for fresh and exhaust air. This gives an energy efficient system which recover heat from the exhaust air. Computer simulation shows that a system solution with one evaporation pressure and one stage compression is problematic for low ambient temperatures; the system must stand temperatures to 40 °C. A system solution with two levels on the evaporation pressure and a two stage compression showed to improves the COP from 1,7 to 3,2 when the ambient temperature at 40 °C. A railway coach need cooling when the ambient temperature is above 20 °C and heating below 15 °C. Norway is a country with cold climate. Weather statistic show that a train which drives in Oslo every day from 0600 to 1800 throughout a year will need cooling 3% of the time and heating 83% the time. This heating should be done by a heat pump and not with electrical heating as today. Results of the computer simulation shows that the annual energy consumption of heating the train will be reduced by 78 % if the designed CO2 heat pump is used in stead of electrical heating.
58

Study of mist flow inside a vane pack geometry

Carlson, Fredrik, Talseth, Mauritz-Arne Olaisen January 2009 (has links)
Vane pack demisters in the industry operate with natural gas at pressures up to 100 bara. A new vane pack has been compared with the traditional one used by the industry. The vane packs have been investigated through experiments and Computational Fluid Dynamics, CFD. The fluid flow inside a vane pack consist of turbulence and two fluid phases. The simulations were carried out with a Large Eddy Simulation model and a Scale-Adaptive Simulation model. Phenomena observed in the experiments were confirmed by CFD. A transient Discrete Phase Model,DPM, that should be capable of modeling the generation of a liquid film together with droplets was used. The DPM simulation gave a mist flow pattern that agreed with the one observed in the laboratory. Separation efficiency measurements of the two vane packs using Exxsol D60 as liquid and SF6 as gas were performed at different pressures, ranging from 1 to 8 barg. This corresponds to natural gas density ranging from 8 to 65 barg. Non of the experiments achieved the specification given by the oil and gas industry. The efficiency measurements did show that the pressure had a great influence on the performance. The low pressure measurements were the only experiments which had a efficiency above 97% at a k-value between 0.2 - 0.25 m/s.
59

Environmental Assessment of Aluminium Production in Europe : Current Situation and Future Scenarios

Steen-Olsen, Kjartan January 2009 (has links)
A multiregional input-output model representing the world in the year 2000 was constructed based on statistical data, and combined with process specific data on a primary aluminium supply chain, to create a model of the global primary aluminium industry. Using input-output methodology, total emissions of eight substances due to primary aluminium production, their size and origins, were estimated and expressed in terms of global warming potential (GWP) and acidification potential (AP). Simulations from 2000 to 2030 were run based on final demand estimates from external GDP projections and three assumed development scenarios. The baseline, scenario 0, assumed no changes in technologies or relative production and trade patterns - only the model's response to the expected change in final demand was analyzed. By contrast, both scenarios 1 and 2 assumed that the additional aluminium production predicted by the baseline would be produced exclusively in China. Scenario 2 employed the added assumption that the Norwegian aluminium production would experience a steady decline from its 2000 level to zero by 2030. The baseline scenario showed rapidly increasing aluminium output towards 2030, following the expected GDP developments. Emissions followed the same trend, increasing about 3.3 times over the three decades. As for total cradle-to-gate impacts of primary aluminium production, the model showed large variations from one region to another. Emissions per ton of Chinese primary aluminium were high relative to most other regions, hence the total global GWP and AP from primary aluminium production rose more rapidly in scenarios 1 and 2 than in scenario 0. By 2030, the GWP in scenarios 1 and 2 were 11.4% and 12.5 higher than in the baseline, while AP were 50.0 and 51.9 higher.
60

Development of Calculation Model for Heat Exchangers in Subsea Systems

Eriksen, Håkon January 2010 (has links)
Subsea processing can make production from otherwise unprofitable fields profitable. In subsea processing controlled cooling of the process fluid will often be required. Robust and simple solutions are desirable in subsea processing. Coolers that rely on natural convection from the surrounding seawater are therefore interesting, but control of the process fluid outlet temperature is hard to obtain in such coolers. In this study a calculation model for subsea coolers has been developed. The commercial software MATLAB has been used for developing a program. Heat transfer and frictional pressure drop correlations have been studied and recommendations are made for the model. The model is based on tubes in parallel, and the tubes can be oriented vertically or horizontally. The program allows for open, semi-open and closed arrangements on the waterside, and both natural and forced convection is implemented. The program has been tested through simulations of two test cases and found to be performing as desired.

Page generated in 0.0293 seconds