• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 23
  • 21
  • 18
  • 8
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 241
  • 241
  • 241
  • 91
  • 64
  • 29
  • 28
  • 25
  • 24
  • 23
  • 23
  • 22
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Differential expressions of cell cycle regulatory proteins and ERK1/2 characterize the proliferative smooth muscle cell phenotype induced by allylamine

Jones, Sarah Anne Louise 30 September 2004 (has links)
Chronic oxidative injury by allylamine induces proliferative vascular smooth muscle cell (vSMC) phenotypes in the rat aorta similar to those seen in rodent and human atherosclerotic lesions. In this study, we evaluate the potential role of cyclin dependent kinase inhibitors, p21 and p27, and extracellular regulated kinases (ERK1/2) to mediate the proliferative advantage of oxidatively stressed (i.e. allylamine injured) vSMC. Isolated rat aortic SMC from allylamine treated and control rats were cultured on different extracellular matrix (ECM) proteins. Following mitogen restriction, cultures were stimulated with serum with or without inhibitors of NF-kB or MEK. Western blot analysis was performed to identify protein differences between treatment groups. Basal levels of p21 were 1.6 fold higher in randomly cycling allylamine cells than control counterparts seeded on a plastic substrate, a difference lost when cells were seeded on collagen. p27 levels were comparable in both cell types irrespective of substrate. Basal levels of p21 and p27 were 1.4 fold higher in G0 synchronized allylamine cells compared with G0 synchronized control cells seeded on a plastic substrate. Following cell cycle progression, differences in protein levels were not detected. Treatment with 100 nM pyrollidine dithiocarbamate (PDTC) resulted in significant decreases in p21 and p27 in allylamine cells versus control cells following serum stimulation for 9 hours. This decrease was even greater for p21 in allylamine cells when grown on collagen relative to control cells. Alterations in peak and temporal activation of ERK1/2 were observed in allylamine cells seeded on a plastic substrate as compared to control cells, following serum stimulation. Seeding on collagen decreased the enhanced peak phosphorylation of ERK1/2 and increased the sustained activity in allylamine cells compared with control counterparts. Inhibition of ERK1/2 activity resulted in reduced p21 expression in both cells types, but the response was markedly enhanced in allylamine cells, and preferentially observed on a restrictive collagen substrate. We conclude that induction of proliferative (i.e. atherogenic) phenotypes following repeated cycles of oxidative injury involves ERK1/2 activity and modulation of the cyclin dependent kinase inhibitors, p21 and p27, in a matrix-dependent manner.
72

Dysregulation of nuclear factor kappa B activity and osteopontin expression in oxidant-induced atherogenesis

Williams, Edward Spencer 30 September 2004 (has links)
NF-κB activity is critical in the regulation of atherosclerotic vascular smooth muscle cell (vSMC) phenotypes induced following oxidative injury by allylamine. The present studies were designed to detail dysregulation of NF-κB activity in these altered phenotypes, and to assess the importance of NF-κB in the regulation of osteopontin, a cytokine which modulates atherosclerosis. Increased degradation of IκBα was observed in allylamine-induced atherosclerotic vSMC phenotypes (henceforth referred to as allylamine cells). Enhanced phosphorylation of I-κ-kinases was observed by Western immunoblotting. NF-κB DNA binding activity as assessed by electrophoretic mobility shift assay demonstrated changes in the kinetics and magnitude of induction of binding. Enhancement of NF-κB binding activity was evident in allylamine cells compared to controls when seeded on plastic, fibronectin, and laminin, but not collagen I. Posttranscriptional alterations in Rel protein expression and nuclear localization partly account for changes in NF-κB DNA binding activity. Promoter-specific NF-κB binding profiles suggest altered dimer prevalence as a consequence of the changes in Rel protein expression. The expression of NF-κB regulated genes osteopontin and MMP-2 was enhanced in allylamine-treated aortas, while cyclin D1 and MMP-9 were unchanged. As the importance of osteopontin in atherosclerosis has been described in several models, subsequent studies were designed to assess osteopontin promoter activity. Activity of the osteopontin promoter was significantly reduced in allylamine cells compared to controls as assessed using a luciferase reporter. Deletion analysis suggested the presence of inhibitory cis-acting elements in the regulatory region of the gene. Mutation of these elements, including VDRE, AP-1, NF-κB, and USF1, indicated that NF-κB and USF1 mediate suppression of osteopontin promoter activity in allylamine cells. Decreased serine phosphorylation of immunoprecipitated RelA/p65 was observed in allylamine cells, indicating decreased ability of this protein to transactive gene promoters. NF-κB was found to play a role in suppression of osteopontin promoter activity by collagen I-mediated integrin signaling. These findings suggest that enhancements in NF-κB activity suppress osteopontin promoter activity in oxidant-activated vSMC cultures. Dysregulation of NF-κB activity occurs as a result of altered matrix and intracellular signaling upstream of the nucleus and possibly differential dimer assembly leading to cell-specific profiles of NF-κB-dependent gene regulation.
73

Compartmentalized phosphodiesterase 4D isoforms expression, targeting and localization in vascular myocytes

Truong, Tammy 14 March 2014 (has links)
During the development of atherosclerosis, contractile vascular smooth muscle cells (VSMCs) change to cells capable of migrating and proliferating to mediate repair, where the responses may be adaptive or mal-adaptive in effect. Cyclic adenosine monophosphate (cAMP)-elevating agents have been shown to inhibit migration of VSMC. cAMP activity within the cell is known to be ubiquitous and dynamic, requiring control through signal termination mechanisms for cellular homeostasis. Phosphodiesterase (PDE) enzymes are central to this critical regulatory process catalyzing the hydrolysis of cAMP. A great deal of insight into the role of PDEs in defining compartmentalization of cAMP signaling has arisen predominately from recent studies on the cAMP-specific PDE4 family. Compartmentalization of PDE4 is mediated by their unique N-terminal domains, which have been proposed to provide the “postcodes/zipcodes” for cellular localization. PDE4D isoforms vary widely, yet their conservation over evolutionary time suggests important non-redundant roles in distinct cellular processes. To study the potential role of individual PDE4D isoforms we seek to utilize the unique N-terminal targeting domains that are proposed to be responsible for their protein-protein interactions and site-directed localization. Herein, we report on the expression, targeting and localization of five “long” PDE4D isoforms and the impact on cell morphology of certain amino-terminal domains of individual PDE4D constructs expressing green fluorescent protein (NT-PDE4D/GFP) in human aortic smooth muscle cells (HASMCs). Through the development of engineered NT-PDE4D/GFP expression plasmids, we were able to study the cell biological impacts associated with the overexpression of individual PDE4D amino-terminal variants in HASMCs. We show that NT-PDE4D5/GFP and NT-PDE4D7/GFP expressing cells exhibited an elongated cell morphology, where this effect was much more marked in NT-PDE4D7/GFP expressing cells, exhibiting multiple leading edge structures and highly elongated “tails”. We identify a potential role for PDE4D7 targeting in the regulation of cell polarity and migration. Our results suggest the novel idea that PDE4D7, rather than the four other long PDE4D isoforms (PDE4D3, PDE4D5, PDE4D8, or PDE4D9), represents the dominant PDE4D variant involved in controlling cAMP-mediated effects on cell tail retraction dynamics. / Thesis (Master, Pathology & Molecular Medicine) -- Queen's University, 2014-03-13 13:00:31.684 / Video I: Time-lapse video of GFP-expressing cell migration in HASMC. GFP expressing cells did not differ in cell migration or morphology compared to non-injected control cells. HASMCs were microinjected with GFP construct. Representative images of micoinjected GFP cells were taken 24 h post-injection overnight at 30min intervals using a Zeiss Axiovert S100 microscope and processed as described in Materials & Methods. (10X) / Video II: Time-lapse video of NT-PDE4D7/GFP-expressing cell migration in HASMC. NT-PDE4D7/GFP expressing cells exhibit elongated tail and decrease in cell migration compared to non-injected control cells. HASMCs were microinjected with NT-PDE4D7/GFP construct. Particle tracking of NT-PDE4D7 cells showed cleaving and full detachment of elongated tail. Representative images of micoinjected NT-PDE4D7 cells were taken 24 h post-injection overnight at 30min intervals using a Zeiss Axiovert S100 microscope and processed as described in Materials & Methods. (10X)
74

Vascular smooth muscle oxidative metabolism and function during vasospasm after subarachnoid haemorrhage

Pyne, Gail Jean January 1999 (has links)
<strong>Aims:</strong> The purpose of the research presented in this thesis is to elucidate the mechanism of the stimulation of oxidative metabolism and contractile function that occurs in vascular smooth muscle during cerebral vasospasm (CV) after subarachnoid haemorrhage (SAH). The biochemical mechanisms leading to CV were investigated using an in vitro model of CV developed for this research. CSF (cerebrospinal fluid) from SAH patients at risk of vasospasm which stimulated oxygen consumption (CSF S ) was used to model vasospasm. The hypothesis is CSF<sub>S</sub> contains a substance which stimulates tension generation over that of CSF<sub>N</sub> ,(non-stimulatory cerebrospinal fluid) and also inhibits the myosin light chain phosphatase. <strong>Methods:</strong> The porcine carotid artery was used as a model for the human basilar artery. The rate of oxygen consumption (JO<sub>2</sub>) was measured in response to CSF<sub>S</sub> and tension generation was also examined. Various agents were used to treat or pretreat the tissue such as magnesium and andalpha;<sub>1</sub>-adrenergic receptor agonists. Their effects on the CSF<sub>S-</sub>induced stimulation were measured to study the mechanism of vasospasm. A myosin light chain phosphatase (MLCP) assay was developed to study the mechanisms leading to CV. <strong>Results and conclusion:</strong> Addition of CSF<sub>S</sub> to the porcine carotid artery is a reliable and reproducible in vitro model of CV. Using this model, it was found that Mg<sup>++</sup> loading and andalpha;<sub>1</sub>-adrenergic receptor agonists attenuated the vasospasm, but a non-specific endothelin antagonist had no effect. Acute addition of 12mM Mg<sup>++</sup> relaxed the tissue from a CSF<sub>S</sub> induced contraction significantly and rendered the contraction rinsible. Okadaic acid (InM), a phosphatase inhibitor, had very similar effects to CSF<sub>S</sub> because it stimulated JO<sub>2</sub> and slowed relaxation after a stretch. There was also significant inhibition of phosphatase caused by the CSF<sub>S</sub>. Vasospasm appears to be caused by a combination of a contractile stimulus, and inhibition of MLCP activity.
75

Effects of flavonoids on proliferation of breast cancer cells and vascular smooth muscle cells /

Liu, Po-shiu, Jackie. January 2007 (has links)
Thesis (M. Med. Sc.)--University of Hong Kong, 2007.
76

An investigation on NAADP-dependent Ca²⁺ signalling mechanisms in arterial smooth muscle /

Kinnear, Nicholas Patrick. January 2007 (has links)
Thesis (Ph.D.) - University of St Andrews, May 2007.
77

Development of a novel organ culture system allowing independent control of local mechanical variables and its implementation in studying the effects of axial stress on arterial remodeling

Dominguez, Zachary. January 2008 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Vito, Raymond; Committee Member: Gleason, Rudolph; Committee Member: Rachev, Alexander. Part of the SMARTech Electronic Thesis and Dissertation Collection.
78

A mandatory requirement of PKC-[delta] in testosterone regulated coronary smooth muscle cell differentiation, proliferation and apoptosis /

Maddali, Kamala Kalyani, January 2005 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2005. / "July 2005" Typescript. Vita. Includes bibliographical references (l. 197-212). Also issued on the Internet.
79

Organization of carbohydrate metabolism in vascular smooth muscle

Lloyd, Pamela G. January 2000 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 189-204). Also available on the Internet.
80

Bcl11b regulates arterial stiffness by regulating vascular smooth muscle contractility

Elavalakanar, Pavania 11 July 2017 (has links)
BACKGROUND: Arterial stiffness (AS), or loss of elastic compliance of large arteries, is an independent risk factor for cardiovascular events1. A recent study demonstrated that single nucleotide polymorphisms (SNPs) in a genetic locus downstream of the gene Bcl11b are associated with AS2. However, how this genetic locus and Bcl11b regulate AS is unknown. OBJECTIVES: To determine the molecular mechanisms by which Bcl11b effects the aortic wall and AS. METHODS: Vascular smooth muscle (VSM) cells were isolated from aortas of wildtype (WT) mice and mice with VSM-specific Bcl11b deletion (BKO). mRNA levels of Bcl11b, vascular contractile markers (myosin heavy chain 11 (MYH11), smooth muscle -actin (ACTA2), and myocardin (MYOCD)) and a cell proliferation marker (Ki67) were measured in WT and BKO VSM cells isolated from murine aortas. VSM cell contractility in response to angiotensin II (angII), a contractile stimulus, was measured in WT and BKO VSM cells using an optimized collagen gel contractility assay. RESULTS: BKO VSM cells had decreased expression of contractile markers compared to WT cells, which resulted in impaired collagen gel contraction in response to angII. CONCLUSIONS: Bc111b is expressed in aortic smooth muscle cells and it regulates the expression of VSM contractile proteins. Our data strongly supports the hypothesis that Bcl11b regulates AS by regulating the contractile function of VSM cells in the aortic wall. / 2019-07-11T00:00:00Z

Page generated in 0.0533 seconds