• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integration of microvascular, interstitial, and lymphatic function to determine the effect of their interaction on interstitial fluid volume

Dongaonkar, Ranjeet Manohar 15 May 2009 (has links)
Although the physics of interstitial fluid balance is relatively well understood, clinical options for the treatment of edema, the accumulation of fluid in the interstitium, are limited. Two related reasons for this failure can be identified. First, the processes involved in the transfer of fluid and proteins into the interstitium from the microvasculature, and their transfer out of the interstitium via the lymphatic system, are governed by complex equations that are not amenable to manipulation by physiologists. Second, the fundamental processes involved include complex anatomical structures that are not amenable to characterization by engineers. The dual tools of the batwing model and simplified mathematical modeling can be used to address the main objective: to integrate microvascular, interstitial, and lymphatic function to determine the effect of their interaction on interstitial fluid volume. In order to address this objective and the limitations of the current state of knowledge of the field, three specific aims were achieved. 1) Develop a simple, transparent, and general algebraic approach that predicts interstitial fluid pressure, volume and protein concentration resulting from the interaction of microvascular, interstitial and lymphatic function. These algebraic solutions provide a novel characterization of interstitial fluid pressure as a balance point between the two processes that determine interstitial inflow and outflow. 2) Develop a simple, algebraic formulation of Edemagenic Gain (the change in interstitial fluid volume resulting from changes in effective microvascular driving pressure) in terms of microvascular, interstitial and lymphatic structural parameters. By separating the structural parameters from functional variables, this novel approach indicates how these critical parameters interact to determine the tendency to form edema. 3) To expand the list of known interactions of microvascular, interstitial, and lymphatic functions to include the direct interaction of venular and lymphatic function. Venomotion was found not only to extrinsically pump lymph but also to mechanically trigger intrinsic lymphatic contractions. These three advances together represent a new direction in the field of interstitial fluid balance, and could only be possible by taking an interdisciplinary approach integrating physiology and engineering.
2

Altered Vasomotion Characteristics as a Method of Investigating Vascular Phenotypic Change

Clinkard, DAVID 27 September 2008 (has links)
Vasomotion is the spontaneous oscillation of vascular tone, occurring due to synchronization of internal calcium fluctuations between multiple vascular smooth muscle cells by gap junction and electrical communication. Although altered vasomotion has been observed in a variety of pathological situations, characterization of these alterations has been lacking. Using a novel method of spectral quantification, and two experimental models known to have altered vascular structure, the present thesis was designed to evaluate whether vasomotion characteristics could be correlated with altered vascular structure. Rats with perinatal iron deficiency (PID) have previously been shown to possess altered vascular structure. When phenylephrine-mediated contractile and acetylcholine-mediated dilatory responses were investigated in PID animals, they both displayed blunted relaxation as compared to control vessels. When vasomotion characteristics were quantified, vessels taken from PID animals exhibited a decreased power in the very low frequency window (VLF <0.2 Hz). Changing vessel oxygenation to 10% O2 from 95% O2 did not result in significant alterations of vasomotion characteristics. The primary frequency of oscillation was investigated with a peak finder, and found to be significantly different compared to control in both the aorta and renal arteries obtained from PID animals. To investigate the effect of antihypertensive treatment (enalapril and hydrochlorothiazide) on gap junction communication, spontaneously hypertensive rats (SHR) were subject to a 2-week intensive angiotensin converting enzyme inhibitor treatment. This treatment resulted in significant vascular structural regression. All vessels (aorta, renal, mesenteric) from treated animals had greater proportions of power in the VLF window, with both the mesenteric and renal vessels exhibiting a primary peak of oscillation around 0.2 Hz; whereas the aorta had a primary peak at 0.12 Hz. Investigating altered gap junction communication with the gap junction blocker 18-α glycyrrhetinic acid, revealed that vascular bed location was the determining factor of vasomotion response. Immunoblotting did not indicate differences in connexin 43, a major gap junction protein in the vascular smooth muscle. These studies suggest that vasomotion characteristics can be used as a method of vascular phenotype investigation; vasomotion characteristics were significantly different in vessels taken from PID and hypertensive animals as compared to control and antihypertensive-treated animals, respectively. / Thesis (Master, Pharmacology & Toxicology) -- Queen's University, 2008-09-26 11:39:44.043
3

Caracterização das flutuações do sinal laser doppller do fluxo  microvascular / Characterization of laser Doppler signal fluctuations in microvascular flow

Corrêa, Melissa Santos Folgosi 19 August 2011 (has links)
O sinal de fluxo cutâneo obtido via fluxometria Laser Doppler (SFLD) tem flutuações de baixas frequências que estão relacionadas a mecanismos de controle do fluxo microvascular. Análises espectrais, via transformada de Fourier e transformada de wavelet, têm sido usadas para correlacionar as flutuações de SFLD com os seguintes mecanismos de controle de fluxo: metabólico, metabólico NO-dependente, neurogênico e miogênico, nos respectivos intervalos de frequência 0,005-0,0095 Hz, 0,0095-0,02 Hz, 0,02-0,05 Hz e 0,05-0,15 Hz. A potência do sinal, em cada intervalo de frequência, geralmente é usada como uma medida da atividade do mecanismo de controle microvascular relacionado. Uma vez que os métodos usados de análise são espectrais, as características das flutuações do SFLD, em cada intervalo de frequência, no domínio do tempo são desconhecidas. Como consequência, há ausência de critérios objetivos para medir adequadamente, em cada intervalo de frequência, os parâmetros hemodinâmicos relacionados. O objetivo deste trabalho foi caracterizar e quantificar flutuações temporais, espaciais e espaço-temporais do SFLD em cada faixa de frequência, usando um método no domínio do tempo. Os fluxos basais (320C) e termicamente estimulados à (420C) das regiões volares de antebraços de 20 voluntários saudáveis foram coletados em duas regiões próximas e analisados. As análises dos dados obtidos indicam que janelas temporais pequenas (1 minuto) são aceitáveis para a quantificação do fluxo médio, e que janelas temporais maiores são necessários para quantificar as flutuações de fluxo. A análise espaço-temporal revelou uma forte correlação entre sinais (em todas as bandas, exceto na banda B5) das duas regiões investigadas, durante longos intervalos de tempo, quando as duas regiões estudadas foram termicamente estimuladas, e menor variabilidade intragrupo quando comparada à obtida para os valores médios das flutuações, sugerindo que o intervalo de tempo de correlação é um parâmetro promissor para estudar mecanismos de controle do fluxo microvascular. / The laser Doppler flow signal from the skin (LDFS) has low-frequency fluctuations which are related to microvascular mechanisms of flow control. The Fourier and the wavelet spectral analysis has been used to correlate fluctuations in the LDFS with the metabolic, metabolic NO-dependent, neurogenic and myogenic mechanisms of control in the frequency intervals 0.005-0.0095 Hz, 0.0095-0.02 Hz, 0.02-0.05 Hz and 0.05-0.15 Hz, respectively. The signal power, in each frequency interval, is generally used as a measure of the activity of the related mechanism of microvascular control. Since spectral analysis methods have been used, the time-domain characteristics of the fluctuations in the LDFS in each frequency interval are unknown. As a consequence, there is a lack of objective criteria to properly measure, in each frequency interval, the related hemodynamic parameters. The aim of this work was characterizing and quantifying temporal, spatial and spatial-temporal fluctuations in the LDFS in each frequency band, using a time-domain method. Baseline (320C) and thermally stimulated (420C) LDFS of volar forearms from 20 healthy volunteers were collected from two close regions and analyzed. The data obtained indicate that short-time windows (1 minute) are acceptable for quantifying the mean flow, and that larger time-windows are needed for quantifying the flow fluctuations. The spatialtemporal analysis revealed strong correlations between signals (all bands, except B5) from the two investigated regions, during large time intervals when thermally stimulated, and lower intragroup variability than the ones obtained for the mean values of fluctuations, suggesting that the time interval of correlation is a promising parameter for studying mechanisms of microvascular flow control.
4

Caracterização das flutuações do sinal laser doppller do fluxo  microvascular / Characterization of laser Doppler signal fluctuations in microvascular flow

Melissa Santos Folgosi Corrêa 19 August 2011 (has links)
O sinal de fluxo cutâneo obtido via fluxometria Laser Doppler (SFLD) tem flutuações de baixas frequências que estão relacionadas a mecanismos de controle do fluxo microvascular. Análises espectrais, via transformada de Fourier e transformada de wavelet, têm sido usadas para correlacionar as flutuações de SFLD com os seguintes mecanismos de controle de fluxo: metabólico, metabólico NO-dependente, neurogênico e miogênico, nos respectivos intervalos de frequência 0,005-0,0095 Hz, 0,0095-0,02 Hz, 0,02-0,05 Hz e 0,05-0,15 Hz. A potência do sinal, em cada intervalo de frequência, geralmente é usada como uma medida da atividade do mecanismo de controle microvascular relacionado. Uma vez que os métodos usados de análise são espectrais, as características das flutuações do SFLD, em cada intervalo de frequência, no domínio do tempo são desconhecidas. Como consequência, há ausência de critérios objetivos para medir adequadamente, em cada intervalo de frequência, os parâmetros hemodinâmicos relacionados. O objetivo deste trabalho foi caracterizar e quantificar flutuações temporais, espaciais e espaço-temporais do SFLD em cada faixa de frequência, usando um método no domínio do tempo. Os fluxos basais (320C) e termicamente estimulados à (420C) das regiões volares de antebraços de 20 voluntários saudáveis foram coletados em duas regiões próximas e analisados. As análises dos dados obtidos indicam que janelas temporais pequenas (1 minuto) são aceitáveis para a quantificação do fluxo médio, e que janelas temporais maiores são necessários para quantificar as flutuações de fluxo. A análise espaço-temporal revelou uma forte correlação entre sinais (em todas as bandas, exceto na banda B5) das duas regiões investigadas, durante longos intervalos de tempo, quando as duas regiões estudadas foram termicamente estimuladas, e menor variabilidade intragrupo quando comparada à obtida para os valores médios das flutuações, sugerindo que o intervalo de tempo de correlação é um parâmetro promissor para estudar mecanismos de controle do fluxo microvascular. / The laser Doppler flow signal from the skin (LDFS) has low-frequency fluctuations which are related to microvascular mechanisms of flow control. The Fourier and the wavelet spectral analysis has been used to correlate fluctuations in the LDFS with the metabolic, metabolic NO-dependent, neurogenic and myogenic mechanisms of control in the frequency intervals 0.005-0.0095 Hz, 0.0095-0.02 Hz, 0.02-0.05 Hz and 0.05-0.15 Hz, respectively. The signal power, in each frequency interval, is generally used as a measure of the activity of the related mechanism of microvascular control. Since spectral analysis methods have been used, the time-domain characteristics of the fluctuations in the LDFS in each frequency interval are unknown. As a consequence, there is a lack of objective criteria to properly measure, in each frequency interval, the related hemodynamic parameters. The aim of this work was characterizing and quantifying temporal, spatial and spatial-temporal fluctuations in the LDFS in each frequency band, using a time-domain method. Baseline (320C) and thermally stimulated (420C) LDFS of volar forearms from 20 healthy volunteers were collected from two close regions and analyzed. The data obtained indicate that short-time windows (1 minute) are acceptable for quantifying the mean flow, and that larger time-windows are needed for quantifying the flow fluctuations. The spatialtemporal analysis revealed strong correlations between signals (all bands, except B5) from the two investigated regions, during large time intervals when thermally stimulated, and lower intragroup variability than the ones obtained for the mean values of fluctuations, suggesting that the time interval of correlation is a promising parameter for studying mechanisms of microvascular flow control.
5

Modelling the role of nitric oxide in cerebral autoregulation

Catherall, Mark January 2014 (has links)
Malfunction of the system which regulates the bloodflow in the brain is a major cause of stroke and dementia, costing many lives and many billions of pounds each year in the UK alone. This regulatory system, known as cerebral autoregulation, has been the subject of much experimental and mathematical investigation yet our understanding of it is still quite limited. One area in which our understanding is particularly lacking is that of the role of nitric oxide, understood to be a potent vasodilator. The interactions of nitric oxide with the better understood myogenic response remain un-modelled and poorly understood. In this thesis we present a novel model of the arteriolar control mechanism, comprising a mixture of well-established and new models of individual processes, brought together for the first time. We show that this model is capable of reproducing experimentally observed behaviour very closely and go on to investigate its stability in the context of the vasculature of the whole brain. In conclusion we find that nitric oxide, although it plays a central role in determining equilibrium vessel radius, is unimportant to the dynamics of the system and its responses to variation in arterial blood pressure. We also find that the stability of the system is very sensitive to the dynamics of Ca<sup>2+</sup> within the muscle cell, and that self-sustaining Ca2+ waves are not necessary to cause whole-vessel radius oscillations consistent with vasomotion.
6

Nonlinear dynamics of microcirculation and energy metabolism for the prediction of cardiovascular risk

Smirni, Salvatore January 2018 (has links)
The peripheral skin microcirculation reflects the overall health status of the cardiovascular system and can be examined non-invasively by laser methods to assess early cardiovascular disease (CVD) risk factors, i.e. oxidative stress and endothelial dysfunction. Examples of methods used for this task are the laser Doppler flowmetry (LDF) and laser fluorescence spectroscopy (LFS), which respectively allow tracing blood flow and the amounts of the coenzyme NAD(P)H (nicotamide adenine dinucleotide) that is involved in the cellular production of ATP (adenosine triphosphate) energy. In this work, these methods were combined with iontophoresis and PORH (post-occlusive reactive hyperaemia) reactive tests to assess skin microvascular function and oxidative stress in mice and human subjects. The main focus of the research was exploring the nonlinear dynamics of skin LDF and NAD(P)H time series by processing the signals with the wavelet transform analysis. The study of nonlinear fluctuations of the microcirculation and cell energy metabolism allows detecting dynamic oscillators reflecting the activity of microvascular factors (i.e. endothelial cells, smooth muscle cells, sympathetic nerves) and specific patterns of mitochondrial or glycolytic ATP production. Monitoring these dynamic factors is powerful for the prediction of general vascular/metabolic health conditions, and can help the study of the mechanisms at the basis of the rhythmic fluctuations of micro-vessels diameter (vasomotion). In this thesis, the microvascular and metabolic dynamic biomarkers were characterised <i>in-vivo</i> in a mouse model affected by oxidative stress and a human cohort of smokers. Data comparison, respectively, with results from control mice and non-smokers, revealed significant differences suggesting the eligibility of these markers as predictors of risk associated with oxidative stress and smoke. Moreover, a relevant link between microvascular and metabolic oscillators was observed during vasomotion induced by α-adrenergic (in mice) or PORH (in humans) stimulations, suggesting a possible role of cellular Ca<sup>2+ </sup>oscillations of metabolic origin as drivers of vasomotion which is a theory poorly explored in literature. As future perspective, further exploration of these promising nonlinear biomarkers is required in the presence of risk factors different from smoke or oxidative stress and during vasomotion induced by stimuli different from PORH or α-adrenergic reactive challenges, to obtain a full picture on the use of these factors as predictors of risk and their role in the regulation of vasomotion.
7

Theoretical Investigation of Intra- and Inter-cellular Spatiotemporal Calcium Patterns in Microcirculation

Parikh, Jaimit B 26 January 2015 (has links)
Microcirculatory vessels are lined by endothelial cells (ECs) which are surrounded by a single or multiple layer of smooth muscle cells (SMCs). Spontaneous and agonist induced spatiotemporal calcium (Ca2+) events are generated in ECs and SMCs, and regulated by complex bi-directional signaling between the two layers which ultimately determines the vessel tone. The contractile state of microcirculatory vessels is an important factor in the determination of vascular resistance, blood flow and blood pressure. This dissertation presents theoretical insights into some of the important and currently unresolved phenomena in microvascular tone regulation. Compartmental and continuum models of isolated EC and SMC, coupled EC-SMC and a multi-cellular vessel segment with deterministic and stochastic descriptions of the cellular components were developed, and the intra- and inter-cellular spatiotemporal Ca2+ mobilization was examined. Coupled EC-SMC model simulations captured the experimentally observed localized subcellular EC Ca2+ events arising from the opening of EC transient receptor vanilloid 4 (TRPV4) channels and inositol triphosphate receptors (IP3Rs). These localized EC Ca2+ events result in endothelium-derived hyperpolarization (EDH) and Nitric Oxide (NO) production which transmit to the adjacent SMCs to ultimately result in vasodilation. The model examined the effect of heterogeneous distribution of cellular components and channel gating kinetics in determination of the amplitude and spread of the Ca2+ events. The simulations suggested the necessity of co-localization of certain cellular components for modulation of EDH and NO responses. Isolated EC and SMC models captured intracellular Ca2+ wave like activity and predicted the necessity of non-uniform distribution of cellular components for the generation of Ca2+ waves. The simulations also suggested the role of membrane potential dynamics in regulating Ca2+ wave velocity. The multi-cellular vessel segment model examined the underlying mechanisms for the intercellular synchronization of spontaneous oscillatory Ca2+ waves in individual SMC. From local subcellular events to integrated macro-scale behavior at the vessel level, the developed multi-scale models captured basic features of vascular Ca2+ signaling and provide insights for their physiological relevance. The models provide a theoretical framework for assisting investigations on the regulation of vascular tone in health and disease.
8

Neural basis and behavioral effects of dynamic resting state functional magnetic resonance imaging as defined by sliding window correlation and quasi-periodic patterns

Thompson, Garth John 20 September 2013 (has links)
While task-based functional magnetic resonance imaging (fMRI) has helped us understand the functional role of many regions in the human brain, many diseases and complex behaviors defy explanation. Alternatively, if no task is performed, the fMRI signal between distant, anatomically connected, brain regions is similar over time. These correlations in “resting state” fMRI have been strongly linked to behavior and disease. Previous work primarily calculated correlation in entire fMRI runs of six minutes or more, making understanding the neural underpinnings of these fluctuations difficult. Recently, coordinated dynamic activity on shorter time scales has been observed in resting state fMRI: correlation calculated in comparatively short sliding windows and quasi-periodic (periodic but not constantly active) spatiotemporal patterns. However, little relevance to behavior or underlying neural activity has been demonstrated. This dissertation addresses this problem, first by using 12.3 second windows to demonstrate a behavior-fMRI relationship previously only observed in entire fMRI runs. Second, simultaneous recording of fMRI and electrical signals from the brains of anesthetized rats is used to demonstrate that both types of dynamic activity have strong correlates in electrophysiology. Very slow neural signals correspond to the quasi-periodic patterns, supporting the idea that low-frequency activity organizes large scale information transfer in the brain. This work both validates the use of dynamic analysis of resting state fMRI, and provides a starting point for the investigation of the systemic basis of many neuropsychiatric diseases.

Page generated in 0.1024 seconds