• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vector Partitions

French, Jennifer 01 May 2018 (has links) (PDF)
Integer partitions have been studied by many mathematicians over hundreds of years. Many identities exist between integer partitions, such as Euler’s discovery that every number has the same amount of partitions into distinct parts as into odd parts. These identities can be proven using methods such as conjugation or generating functions. Over the years, mathematicians have worked to expand partition identities to vectors. In 1963, M. S. Cheema proved that every vector has the same number of partitions into distinct vectors as into vectors with at least one component odd. This parallels Euler’s result for integer partitions. The primary purpose of this paper is to use generating functions to prove other vector partition identities that parallel results of integer partitions.

Page generated in 0.0795 seconds