11 |
Adaptive image and video compression using vector quantization and self-organizing neural networksLiu, Hui January 1994 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 1994. / Includes bibliographical references (leaves 199-209). / Microfiche. / xii, 209 leaves, bound ill. 29 cm
|
12 |
Combining generic programming with vector processing for machine visionLai, Bing-Chang. January 2005 (has links)
Thesis (Ph.D.)--University of Wollongong, 2005. / Typescript. Includes bibliographical references: p. 333-339.
|
13 |
An interface between single assignment C and vector pascalLi, Bin. January 2007 (has links)
Thesis (Ph.D.) - University of Glasgow, 2007. / Ph.D. thesis submitted to the Department of Computing Science, Faculty of Information and Mathematical Sciences, University of Glasgow, 2007. Includes bibliographical references. Print version also available.
|
14 |
A structural skeleton based shape indexing approach for vector imagesSong, Mingkui. January 2009 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Computer Science, 2009. / Includes bibliographical references.
|
15 |
Automatic detection of image orientation using Support Vector MachinesWalsh, Dane A. 12 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2002. / ENGLISH ABSTRACT: In this thesis, we present a technique for the automatic detection of image orientation using Support
Vector Machines (SVMs). SVMs are able to handle feature spaces of high dimension and automatically
choose the most discriminative features for classification. We investigate the use of various
kernels, including heavy tailed RBF kernels. We compare the classification performance of SVMs
with the performance of multilayer perceptrons and a Bayesian classifier. Our results show that SVMs
out perform both of these methods in the classification of individual images. We also implement an
application for the classification of film rolls in a photographic workflow environment with 100%
classification accuracy. / AFRIKAANSE OPSOMMING: In hierdie tesis, gebruik ons 'n tegniek vir die automatiese klassifisering van beeldoriëntasie deur
middel van Support Vector Machines (SVM's). SVM's kan kenmerkruimtes van 'n hoë dimensie
hanteer en kan automaties die mees belangrike kenmerke vir klassifikasie kies. Ons vors die gebruik
van verskeie kerne, insluitende RBF-kerne, na. Ons vergelyk die klassifiseringsresultate van SVM's
met die van multilaagperseptrone en 'n Bayes-klassifiseerder. Ons bewys dat SVM's beter resultate
gee as beide van hierdie metodes vir die klassifikasie van individuele beelde. Ons implementeer ook
a toepassing vir die klassifisering van rolle film in a fotografiese werkvloei-omgewing met 100%
klassifikasie akuraatheid.
|
16 |
Vector processor services for local area networksThomas, Scott D. 31 October 2009 (has links)
Vector processors conventionally have been used as an attached processor to a host computer. Within this limited scope, the application programmer must use the host computer in order to benefit from the vector processor resources. By using a local area network, programmers are no longer constrained to a specific host computer. The vector processor may be shared as a network resource.
The vector processor service is developed within a distributed environment and, therefore, must address concerns pertinent to distributed system architecture. These issues include implementation methodologies, interprocess communication performance, protocol processing and network throughput, and the level of transparency of the implementations. This thesis presents models that facilitate implementation of the vector processor service over a local area network (LAN). The research investigates the performance of different interprocess communication techniques and alternative transport protocols, specifically TCP and UDP. Additionally, two LAN technologies are examined for the vector processor service, namely Ethernet and Fiber Data Distributed Interface (FDDI).
Experiments are performed for a batch application using an Ethernet local area network. Simulations are done for a real-time application utilizing an Ethernet LAN as well as for the same batch application. Additionally, a FDDI local area network is simulated for a real-time application. Results indicate that the model based on remote program execution has better performance because of lower network communication overhead compared to the model based on remote procedure calls. However, the remote procedure call model provides for a more transparent implementation of the vector processor service. This thesis also discusses methods to improve the performance of the vector processor service, including better implementations and transport protocols, alternative remote procedure call protocols, and new multiprocessor architectures. / Master of Science
|
17 |
Raster to vector conversion in a local, exact and near optimal mannerCarter, John Andrew January 1991 (has links)
A dissertation submitted to the Faculty of Science, University
of the Witwatersrand, Johannesburg, in partial fulfillment of the
requirements for the degree of Master of Science. Pretoria 1991. / Remote sensing can be used to produce maps of land-cover, but to
be of use to the GIS community these maps must first be
vectorized in an intelligent manner.
Existing algorithms suffer from the defects of being slow, memory
intensive and producing vast quantities of very short vectors.
Furthermore if these vectors are thinned via standard algorithms,
errors are introduced.
The process of vectorizing raster maps is subject to major
ambiguities. Thus an infinite family of vector maps ccrresponds
to each raster map. This dissertation presents an algorithm for
converting raster maps in a rapid manner to accurate vector maps
with a minimum of vectors.
The algorithm converts raster maps to vector maps using local
information only, (a two by two neighbourhood). the method is
"exact" in the sense that rasterizing the resulting polygons
would produce exactly the same raster map, pixel for pixel.
The method is "near optimal" in that it produces, in a local
sense, that "exacb" vector map having the least number of
vectors.
The program is built around a home-grown object oriented
Programming System (OOPS) for the C programming language. The
main features of the OOPS system, (called OopCdaisy), are virtual
and static methods, polymorphism, generalized containers,
container indices and thorough error checking, The following
general purpose objects are implemented with a large number of
sophistiated methods :- Stacks, LIFO lists, scannable containers
with indices, trees and 2D objects like points, lines etc. / AC2017
|
18 |
Uso efetivo da matemática intervalar em supercomputadores vetoriais / Effective use of interval mathematics on vector supercomputersDiverio, Tiaraju Asmuz January 1995 (has links)
Este trabalho apresenta um estudo do uso da Matemática Intervalar na resolução de problemas em supercomputadores, através da biblioteca de rotinas intervalares denominada libavi.a (aritmética vetorial intervalar), proporcionando não só aumento de velocidade de processamento via vetorização, mas exatidão e controle de erros nos cálculos através do emprego da aritmética intervalar. Foram identificadas duas das barreiras que a resolução de problemas numéricos em computadores enfrenta. Estas barreiras se referem a qualidade do resultado e ao porte do problema a ser resolvido. Verificou-se a existência de uma grande lacuna entre o avanço tecnol6gico, incluindo o desenvolvimento de computadores cada vez mais rápidos, e poderosos e a qualidade com que os cálculos são feitos. Através dos supercomputadores (geralmente computadores vetoriais e/ou paralelos), os resultados são) obtidos com extrema rapidez, mas nem sempre se sabe quão confiáveis realmente são. Como a definição da aritmética da maquina ficava a cargo do fabricante, cada sistema tinha as suas próprias características e defeitos. Cálculos efetuados em diferentes maquinas raramente produziam resultados compatíveis. Então, em 1980, a IEEE adotou o padrão de aritmética binária de ponto-flutuante, conhecida como padrão IEEE 754. Isto foi um passo no sentido de se resolver a questão de qualidade numérica dos resultados, mas este padrão não especificou tudo. A pesquisa evoluiu para a proposta de uma aritmética de alta exatidão e alto desempenho, que tome disponível operações com intervalos e a própria matemática intervalar aos usuários do supercomputador vetorial Cray Y-MP2E. Como protótipo desta aritmética de alto desempenho, foi desenvolvido um estudo, uma especificação e, posteriormente, implementada uma biblioteca de rotinas intervalares no supercomputador Cray Y-MP2E, denominada libavi.a. 0 nome libavi.a significa biblioteca (lib) composta da aritm6tica vetorial intervalar (avi). 0 sufixo .a é o sufixo padrão de bibliotecas no Cray. Com a libavi.a definiu-se a aritm6tica de alto desempenho, composta do processamento de alto desempenho (vetorial) e da matemática intervalar. Não se tem a aritm6tica de alta exatidão e alto desempenho, pois no ambiente vetorial, como do supercomputador Cray Y-MP2E com a linguagem de programação Fortran 90, a aritm6tica não segue o padrão da IEEE 754 na especificação do tamanho da palavra nem na forma como os arredondamentos e operações aritméticas em ponto-flutuante efetuadas. Foi necessário desenvolver rotinas que simulassem Os arredondamentos direcionados e operações em ponto-flutuante com controle de erro de arredondamento. A biblioteca libavi.a é um conjunto de rotinas intervalares que reúne as características da matemática intervalar no ambiente do supercomputador vetorial Cray Y-MP. A libavi.a foi desenvolvida em Fortran 90, o que possibilitou as características de modularidade, sobrecarga de operadores e funções, uso de arrays dinâmicos na definição de vetores e matrizes e a definição de novos tipos de dados próprios a analise matemática. A biblioteca foi organizada em quatro módulos: básico (com 52 rotinas que implementam intervalos reais), mvi (com 151 rotinas sobre matrizes e vetores de intervalos reais), aplic (com 29 rotinas intervalares sobre aplicações da álgebra linear) e ci (com 58 rotinas que implementam intervalos complexos). O módulo básico contem a aritmética intervalar básica, sendo, por isso, utilizado por todos os demais. O módulo aplic contém os demais módulos, pois ele se utiliza deles. .O módulo de intervalos complexos, contém o módulo básico. Além da aritmética vetonal intervalar (operações, funções e avaliação de expressões), sentiu-se a necessidade de providenciar bibliotecas que tornassem disponíveis os métodos intervalares para usuários do Cray (na resolução de problemas). Inicialmente foi especificada a biblioteca cientifica aplicativa libselint.a, composta por algumas rotinas intervalares de resolução de equações algébricas e sistemas de equações lineares. Observa-se que desta biblioteca aplicativa foram implementadas apenas algumas rotinas visando verificar e validar o uso da biblioteca intervalar e da matemática intervalar em supercomputadores. Por fim, foram desenvolvidos vários testes que verificaram a biblioteca de rotinas intervalares quanto a sua correção e compatibilidade com a documentação. Todos os resultados obtidos através de programas que utilizavam a libavi.a foram comparados com os resultados produzidos por programas análogos em Pascal XSC. A validação do uso da Matemática Intervalar no supercomputador vetorial se deu através da resolução de problemas numéricos implementados em Fortran 90, utilizando a libavi.a, e seus resultados foram confrontados com o de outras bibliotecas. / In this study a practical use of Interval Mathematics, for the resolution of numerical problems, through a new tool, libavi.a (Vector and Interval Arithmetic Library) is presented. A new tool for resolution of numerical problems in supercomputers is proposed, providing increase in processing speed through vectorization and adding accuracy and error control at the performance of interval arithmetic. Two limitations of numerical problems resolution in computers were identified. These limitations are related to the quality of results and the size of the problem to be solved. A big distance between technology improvement, including development of more powerful and faster computers, and the quality of calculus performance is the consequence of this progress. Among supercomputers (vectorial and parallel computers) the results are quickly obtained, but we may not know how exact they are. Since the definition of machine arithmetic was in charge of makers, each system has its own characteristics and problems. Compatible or equal results are rarely produced when calculus are made in different machines. Then in 1980, the IEEE adopted the pattern of binary floating-point arithmetic, known as pattern IEEE754. This was one step in the correct direction for solving the matter of results numerical quality. Anyway this pattern was incomplete. Research has come to a development proposal of a high accuracy and high performance arithmetic, which supports interval operations and interval mathematics itself for the user of Cray supercomputer. A study and specification were developed as a prototype application of this definition of high performance arithmetic. Later also a design and implementation of the library of interval routines programmed in FORTRAN 90 were made on Cray Y-MP supercomputer environment, called libavi.a. The name libavi.a means library (lib) composed of vector interval arithmetic (avi, in Portuguese). The suffix .a is the suffix of libraries on Cray. High performance arithmetic was defined for libavi.a, which is composed of high performance processing and interval mathematics. The high accuracy and high performance arithmetic was not possible because, on Cray Y-MP supercomputer environment with the programming language FORTRAN 90, the native arithmetic is not according to the pattern of IEEE 754. The specification of the word size, the way that the arithmetic operations in floating-point are made and the kind of roundings are different from the pattern. It was necessary to simulate these operations and roundings. The library libavi is a set of interval routines that meets characteristics of interval mathematics in the environment of vector supercomputer Cray Y-MP. It was developed in FORTRAN 90, making available some characteristics as modularity, overloading of operators and functions, the use of dynamic arrays in the definition of vectors and matrix and the definition of new kinds of data from analysis mathematics. It was organized in four modules: basic (with 52 routines of real intervals), my/ (with 151 routines over real interval matrix and vectors), aplic (with 29 routines over linear algebra) and ci (with 58 routines of complex intervals). The basic module contains the basic interval arithmetic and therefore it is used by all other modules. The aplic module contains the three other modules, because it uses their routines. Then the complex interval module contains the basic module. Finally, some tests are made to verify the correctness of interval routines library and compatibility with its documentation. All the results from FORTRAN and Pascal XSC programs for the same problems were compared. The validation of interval mathematics use on Cray supercomputer was made through the resolution of numerical problems programmed in FORTRAN 90, using the library libavi and the results was compared with other libraries.
|
19 |
Uso efetivo da matemática intervalar em supercomputadores vetoriais / Effective use of interval mathematics on vector supercomputersDiverio, Tiaraju Asmuz January 1995 (has links)
Este trabalho apresenta um estudo do uso da Matemática Intervalar na resolução de problemas em supercomputadores, através da biblioteca de rotinas intervalares denominada libavi.a (aritmética vetorial intervalar), proporcionando não só aumento de velocidade de processamento via vetorização, mas exatidão e controle de erros nos cálculos através do emprego da aritmética intervalar. Foram identificadas duas das barreiras que a resolução de problemas numéricos em computadores enfrenta. Estas barreiras se referem a qualidade do resultado e ao porte do problema a ser resolvido. Verificou-se a existência de uma grande lacuna entre o avanço tecnol6gico, incluindo o desenvolvimento de computadores cada vez mais rápidos, e poderosos e a qualidade com que os cálculos são feitos. Através dos supercomputadores (geralmente computadores vetoriais e/ou paralelos), os resultados são) obtidos com extrema rapidez, mas nem sempre se sabe quão confiáveis realmente são. Como a definição da aritmética da maquina ficava a cargo do fabricante, cada sistema tinha as suas próprias características e defeitos. Cálculos efetuados em diferentes maquinas raramente produziam resultados compatíveis. Então, em 1980, a IEEE adotou o padrão de aritmética binária de ponto-flutuante, conhecida como padrão IEEE 754. Isto foi um passo no sentido de se resolver a questão de qualidade numérica dos resultados, mas este padrão não especificou tudo. A pesquisa evoluiu para a proposta de uma aritmética de alta exatidão e alto desempenho, que tome disponível operações com intervalos e a própria matemática intervalar aos usuários do supercomputador vetorial Cray Y-MP2E. Como protótipo desta aritmética de alto desempenho, foi desenvolvido um estudo, uma especificação e, posteriormente, implementada uma biblioteca de rotinas intervalares no supercomputador Cray Y-MP2E, denominada libavi.a. 0 nome libavi.a significa biblioteca (lib) composta da aritm6tica vetorial intervalar (avi). 0 sufixo .a é o sufixo padrão de bibliotecas no Cray. Com a libavi.a definiu-se a aritm6tica de alto desempenho, composta do processamento de alto desempenho (vetorial) e da matemática intervalar. Não se tem a aritm6tica de alta exatidão e alto desempenho, pois no ambiente vetorial, como do supercomputador Cray Y-MP2E com a linguagem de programação Fortran 90, a aritm6tica não segue o padrão da IEEE 754 na especificação do tamanho da palavra nem na forma como os arredondamentos e operações aritméticas em ponto-flutuante efetuadas. Foi necessário desenvolver rotinas que simulassem Os arredondamentos direcionados e operações em ponto-flutuante com controle de erro de arredondamento. A biblioteca libavi.a é um conjunto de rotinas intervalares que reúne as características da matemática intervalar no ambiente do supercomputador vetorial Cray Y-MP. A libavi.a foi desenvolvida em Fortran 90, o que possibilitou as características de modularidade, sobrecarga de operadores e funções, uso de arrays dinâmicos na definição de vetores e matrizes e a definição de novos tipos de dados próprios a analise matemática. A biblioteca foi organizada em quatro módulos: básico (com 52 rotinas que implementam intervalos reais), mvi (com 151 rotinas sobre matrizes e vetores de intervalos reais), aplic (com 29 rotinas intervalares sobre aplicações da álgebra linear) e ci (com 58 rotinas que implementam intervalos complexos). O módulo básico contem a aritmética intervalar básica, sendo, por isso, utilizado por todos os demais. O módulo aplic contém os demais módulos, pois ele se utiliza deles. .O módulo de intervalos complexos, contém o módulo básico. Além da aritmética vetonal intervalar (operações, funções e avaliação de expressões), sentiu-se a necessidade de providenciar bibliotecas que tornassem disponíveis os métodos intervalares para usuários do Cray (na resolução de problemas). Inicialmente foi especificada a biblioteca cientifica aplicativa libselint.a, composta por algumas rotinas intervalares de resolução de equações algébricas e sistemas de equações lineares. Observa-se que desta biblioteca aplicativa foram implementadas apenas algumas rotinas visando verificar e validar o uso da biblioteca intervalar e da matemática intervalar em supercomputadores. Por fim, foram desenvolvidos vários testes que verificaram a biblioteca de rotinas intervalares quanto a sua correção e compatibilidade com a documentação. Todos os resultados obtidos através de programas que utilizavam a libavi.a foram comparados com os resultados produzidos por programas análogos em Pascal XSC. A validação do uso da Matemática Intervalar no supercomputador vetorial se deu através da resolução de problemas numéricos implementados em Fortran 90, utilizando a libavi.a, e seus resultados foram confrontados com o de outras bibliotecas. / In this study a practical use of Interval Mathematics, for the resolution of numerical problems, through a new tool, libavi.a (Vector and Interval Arithmetic Library) is presented. A new tool for resolution of numerical problems in supercomputers is proposed, providing increase in processing speed through vectorization and adding accuracy and error control at the performance of interval arithmetic. Two limitations of numerical problems resolution in computers were identified. These limitations are related to the quality of results and the size of the problem to be solved. A big distance between technology improvement, including development of more powerful and faster computers, and the quality of calculus performance is the consequence of this progress. Among supercomputers (vectorial and parallel computers) the results are quickly obtained, but we may not know how exact they are. Since the definition of machine arithmetic was in charge of makers, each system has its own characteristics and problems. Compatible or equal results are rarely produced when calculus are made in different machines. Then in 1980, the IEEE adopted the pattern of binary floating-point arithmetic, known as pattern IEEE754. This was one step in the correct direction for solving the matter of results numerical quality. Anyway this pattern was incomplete. Research has come to a development proposal of a high accuracy and high performance arithmetic, which supports interval operations and interval mathematics itself for the user of Cray supercomputer. A study and specification were developed as a prototype application of this definition of high performance arithmetic. Later also a design and implementation of the library of interval routines programmed in FORTRAN 90 were made on Cray Y-MP supercomputer environment, called libavi.a. The name libavi.a means library (lib) composed of vector interval arithmetic (avi, in Portuguese). The suffix .a is the suffix of libraries on Cray. High performance arithmetic was defined for libavi.a, which is composed of high performance processing and interval mathematics. The high accuracy and high performance arithmetic was not possible because, on Cray Y-MP supercomputer environment with the programming language FORTRAN 90, the native arithmetic is not according to the pattern of IEEE 754. The specification of the word size, the way that the arithmetic operations in floating-point are made and the kind of roundings are different from the pattern. It was necessary to simulate these operations and roundings. The library libavi is a set of interval routines that meets characteristics of interval mathematics in the environment of vector supercomputer Cray Y-MP. It was developed in FORTRAN 90, making available some characteristics as modularity, overloading of operators and functions, the use of dynamic arrays in the definition of vectors and matrix and the definition of new kinds of data from analysis mathematics. It was organized in four modules: basic (with 52 routines of real intervals), my/ (with 151 routines over real interval matrix and vectors), aplic (with 29 routines over linear algebra) and ci (with 58 routines of complex intervals). The basic module contains the basic interval arithmetic and therefore it is used by all other modules. The aplic module contains the three other modules, because it uses their routines. Then the complex interval module contains the basic module. Finally, some tests are made to verify the correctness of interval routines library and compatibility with its documentation. All the results from FORTRAN and Pascal XSC programs for the same problems were compared. The validation of interval mathematics use on Cray supercomputer was made through the resolution of numerical problems programmed in FORTRAN 90, using the library libavi and the results was compared with other libraries.
|
20 |
Uso efetivo da matemática intervalar em supercomputadores vetoriais / Effective use of interval mathematics on vector supercomputersDiverio, Tiaraju Asmuz January 1995 (has links)
Este trabalho apresenta um estudo do uso da Matemática Intervalar na resolução de problemas em supercomputadores, através da biblioteca de rotinas intervalares denominada libavi.a (aritmética vetorial intervalar), proporcionando não só aumento de velocidade de processamento via vetorização, mas exatidão e controle de erros nos cálculos através do emprego da aritmética intervalar. Foram identificadas duas das barreiras que a resolução de problemas numéricos em computadores enfrenta. Estas barreiras se referem a qualidade do resultado e ao porte do problema a ser resolvido. Verificou-se a existência de uma grande lacuna entre o avanço tecnol6gico, incluindo o desenvolvimento de computadores cada vez mais rápidos, e poderosos e a qualidade com que os cálculos são feitos. Através dos supercomputadores (geralmente computadores vetoriais e/ou paralelos), os resultados são) obtidos com extrema rapidez, mas nem sempre se sabe quão confiáveis realmente são. Como a definição da aritmética da maquina ficava a cargo do fabricante, cada sistema tinha as suas próprias características e defeitos. Cálculos efetuados em diferentes maquinas raramente produziam resultados compatíveis. Então, em 1980, a IEEE adotou o padrão de aritmética binária de ponto-flutuante, conhecida como padrão IEEE 754. Isto foi um passo no sentido de se resolver a questão de qualidade numérica dos resultados, mas este padrão não especificou tudo. A pesquisa evoluiu para a proposta de uma aritmética de alta exatidão e alto desempenho, que tome disponível operações com intervalos e a própria matemática intervalar aos usuários do supercomputador vetorial Cray Y-MP2E. Como protótipo desta aritmética de alto desempenho, foi desenvolvido um estudo, uma especificação e, posteriormente, implementada uma biblioteca de rotinas intervalares no supercomputador Cray Y-MP2E, denominada libavi.a. 0 nome libavi.a significa biblioteca (lib) composta da aritm6tica vetorial intervalar (avi). 0 sufixo .a é o sufixo padrão de bibliotecas no Cray. Com a libavi.a definiu-se a aritm6tica de alto desempenho, composta do processamento de alto desempenho (vetorial) e da matemática intervalar. Não se tem a aritm6tica de alta exatidão e alto desempenho, pois no ambiente vetorial, como do supercomputador Cray Y-MP2E com a linguagem de programação Fortran 90, a aritm6tica não segue o padrão da IEEE 754 na especificação do tamanho da palavra nem na forma como os arredondamentos e operações aritméticas em ponto-flutuante efetuadas. Foi necessário desenvolver rotinas que simulassem Os arredondamentos direcionados e operações em ponto-flutuante com controle de erro de arredondamento. A biblioteca libavi.a é um conjunto de rotinas intervalares que reúne as características da matemática intervalar no ambiente do supercomputador vetorial Cray Y-MP. A libavi.a foi desenvolvida em Fortran 90, o que possibilitou as características de modularidade, sobrecarga de operadores e funções, uso de arrays dinâmicos na definição de vetores e matrizes e a definição de novos tipos de dados próprios a analise matemática. A biblioteca foi organizada em quatro módulos: básico (com 52 rotinas que implementam intervalos reais), mvi (com 151 rotinas sobre matrizes e vetores de intervalos reais), aplic (com 29 rotinas intervalares sobre aplicações da álgebra linear) e ci (com 58 rotinas que implementam intervalos complexos). O módulo básico contem a aritmética intervalar básica, sendo, por isso, utilizado por todos os demais. O módulo aplic contém os demais módulos, pois ele se utiliza deles. .O módulo de intervalos complexos, contém o módulo básico. Além da aritmética vetonal intervalar (operações, funções e avaliação de expressões), sentiu-se a necessidade de providenciar bibliotecas que tornassem disponíveis os métodos intervalares para usuários do Cray (na resolução de problemas). Inicialmente foi especificada a biblioteca cientifica aplicativa libselint.a, composta por algumas rotinas intervalares de resolução de equações algébricas e sistemas de equações lineares. Observa-se que desta biblioteca aplicativa foram implementadas apenas algumas rotinas visando verificar e validar o uso da biblioteca intervalar e da matemática intervalar em supercomputadores. Por fim, foram desenvolvidos vários testes que verificaram a biblioteca de rotinas intervalares quanto a sua correção e compatibilidade com a documentação. Todos os resultados obtidos através de programas que utilizavam a libavi.a foram comparados com os resultados produzidos por programas análogos em Pascal XSC. A validação do uso da Matemática Intervalar no supercomputador vetorial se deu através da resolução de problemas numéricos implementados em Fortran 90, utilizando a libavi.a, e seus resultados foram confrontados com o de outras bibliotecas. / In this study a practical use of Interval Mathematics, for the resolution of numerical problems, through a new tool, libavi.a (Vector and Interval Arithmetic Library) is presented. A new tool for resolution of numerical problems in supercomputers is proposed, providing increase in processing speed through vectorization and adding accuracy and error control at the performance of interval arithmetic. Two limitations of numerical problems resolution in computers were identified. These limitations are related to the quality of results and the size of the problem to be solved. A big distance between technology improvement, including development of more powerful and faster computers, and the quality of calculus performance is the consequence of this progress. Among supercomputers (vectorial and parallel computers) the results are quickly obtained, but we may not know how exact they are. Since the definition of machine arithmetic was in charge of makers, each system has its own characteristics and problems. Compatible or equal results are rarely produced when calculus are made in different machines. Then in 1980, the IEEE adopted the pattern of binary floating-point arithmetic, known as pattern IEEE754. This was one step in the correct direction for solving the matter of results numerical quality. Anyway this pattern was incomplete. Research has come to a development proposal of a high accuracy and high performance arithmetic, which supports interval operations and interval mathematics itself for the user of Cray supercomputer. A study and specification were developed as a prototype application of this definition of high performance arithmetic. Later also a design and implementation of the library of interval routines programmed in FORTRAN 90 were made on Cray Y-MP supercomputer environment, called libavi.a. The name libavi.a means library (lib) composed of vector interval arithmetic (avi, in Portuguese). The suffix .a is the suffix of libraries on Cray. High performance arithmetic was defined for libavi.a, which is composed of high performance processing and interval mathematics. The high accuracy and high performance arithmetic was not possible because, on Cray Y-MP supercomputer environment with the programming language FORTRAN 90, the native arithmetic is not according to the pattern of IEEE 754. The specification of the word size, the way that the arithmetic operations in floating-point are made and the kind of roundings are different from the pattern. It was necessary to simulate these operations and roundings. The library libavi is a set of interval routines that meets characteristics of interval mathematics in the environment of vector supercomputer Cray Y-MP. It was developed in FORTRAN 90, making available some characteristics as modularity, overloading of operators and functions, the use of dynamic arrays in the definition of vectors and matrix and the definition of new kinds of data from analysis mathematics. It was organized in four modules: basic (with 52 routines of real intervals), my/ (with 151 routines over real interval matrix and vectors), aplic (with 29 routines over linear algebra) and ci (with 58 routines of complex intervals). The basic module contains the basic interval arithmetic and therefore it is used by all other modules. The aplic module contains the three other modules, because it uses their routines. Then the complex interval module contains the basic module. Finally, some tests are made to verify the correctness of interval routines library and compatibility with its documentation. All the results from FORTRAN and Pascal XSC programs for the same problems were compared. The validation of interval mathematics use on Cray supercomputer was made through the resolution of numerical problems programmed in FORTRAN 90, using the library libavi and the results was compared with other libraries.
|
Page generated in 0.1036 seconds