1 |
Étude de la formulation et des propriétés mécaniques et thermiques du béton de balles de riz / Study of the formulation and the mechanical and thermal properties of rice husks concreteChabi, Edem 21 December 2017 (has links)
Chacun s’accorde à reconnaître aujourd’hui que les activités humaines impactent significativement le climat de la planète. Le secteur de la construction est l’un des principaux responsables de cette situation car c’est le premier consommateur d’énergie et le deuxième émetteur de CO2 dans le monde. Il importe par conséquent de réaliser des bâtiments éco-respectueux, qui consomment peu d’énergie et émettent moins de gaz à effet de serre sur l’ensemble de leur cycle de vie. La présente étude s’intègre alors dans une problématique générale de développement de matériaux de construction innovants à impact environnemental réduit. Nous nous proposons ainsi d’utiliser la balle de riz comme granulat végétal dans une matrice cimentaire. L’objectif du travail est de proposer une méthode de formulation des bétons à bases de granulats végétaux et d’étudier le comportement mécanique et thermique du béton de balle de riz. Les essais de prise réalisés sur de la pâte de ciment pure formulée avec de l’eau issue de l’infusion de la balle de riz ont montré que ces granulats n’ont pas d’effet inhibiteur sur la prise du ciment. Pour confirmer cette hypothèse, une analyse chimique de la balle de riz a été réalisée et les résultats ont montré le taux d’extractibles des balles de riz est quasi nul contrairement à d’autres granulats végétaux tels que le chanvre et le bois. La méthode de formulation proposée consiste à déterminer la compacité du squelette végétal pour un mode de mise en œuvre déterminé, puis à formuler la pâte liante qui va occuper le volume poreux intergranulaire résiduel. La pâte est constituée du liant, de l’eau efficace, des additions et adjuvants éventuels, et de l’air piégé et/ou entrainé. Pour un volume d’air donné (et d’additions), les quantités de ciment et d’eau efficace sont alors ajustées pour atteindre les performances visées, sur la base de la loi de Féret. Cependant, pour ce type de béton, l’important volume d’air entrainé dépend (lui aussi) de la quantité de ciment et d’eau présents dans le mélange, de l’intensité du malaxage et du mode de coulage. Un modèle décrivant le volume d’air résiduel a été alors calibré à partir d’essais réalisés avec les constituants du béton que l’on souhaite fabriquer. Enfin le problème de la formulation est solutionné en recourant à un module d’optimisation numérique. Dans le but de valider le modèle, la méthode de formulation a été appliquée à cinq échantillons dont les résistances visées sont 0,5 ; 1 ; 2 ; 4 et 8 MPa. Les performances obtenues sont assez proches de celles visées. Par ailleurs il a été constaté que le mode de conservation des éprouvettes influe beaucoup sur les résistances mécaniques du matériau. En effet, une cure en condition dessiccation peut faire chuter les résistances mécaniques jusqu’à 60%. Les meilleures résistances obtenues ont été observées sur les éprouvettes conservées à 95 % de HR. Les mesures de la conductivité thermique ont montré que le béton de balle de riz constitue une très bonne alternative à des systèmes plus conventionnels en termes d’isolation thermique. La valeur moyenne de la conductivité thermique du béton de balle de riz varie en fonction du dosage en liant entre 0,070 W/(m.K) et 0,171 W/(m.K). L’évolution de la conductivité thermique en fonction de la masse volumique et du dosage en ciment est linéaire / Everyone agrees today that human activities significantly affect the climate of the planet. The construction sector is one of the main contributors to this situation as it is the largest energy consumer and the second largest CO2 emitter in the world. It is therefore important to build eco-friendly buildings, which consume little energy and emit less greenhouse gases throughout their life cycle. The present study is then integrated into a general problem of development of innovative building materials with reduced environmental impact. We propose to use the rice husk as a vegetable aggregate in a cementitious matrix. The objective of the work is to propose a method for the mix design of concretes based on plant aggregates and to study the mechanical and thermal behavior of rice husk concrete. Setting tests on pure cement paste formulated with water resulting from the infusion of the rice husk showed that these aggregates had no inhibiting effect on the setting of the cement. To confirm this hypothesis, a chemical analysis of the rice husk was carried out and the results showed that the extractable ratio of rice husks is almost zero, unlike other plant aggregates such as hemp and wood. The proposed formulation method consists in determining the packing density of the plant skeleton for a given method of implementation and then in proportioning the binder paste which will occupy the residual intergranular pore volume. The paste is consisted of the binder, the effective water, the possible additions and admixture, and trapped air and/or entrained air. For a given volume of air (and additions), the quantities of cement and effective water are then adjusted to achieve the targeted performances, based on the law of Féret. However, for this type of concrete, the large volume of entrained air also depends on the quantity of cement and water present in the mixture, the intensity of the mixing and the casting mode. A model describing the volume of residual air was then calibrated from tests carried out with the components of the concrete that it is desired to manufacture. Finally, the problem of formulation is solved by using a numerical optimization module. In order to validate the model, the method for the mix design was applied to five samples with a target resistance of 0.5; 1; 2; 4 and 8 MPa. The performances obtained are quite similar to those targeted. In addition, it has been observed that the preservation mode of the specimens has a significant influence on the mechanical strength of the material. Indeed, a cure in desiccation condition can reduce the mechanical resistances up to 60%. The best resistances obtained were observed on the specimens preserved at 95 % RH. Measurements of thermal conductivity have shown that rice husk concrete is a very good alternative to more conventional systems in terms of thermal insulation. The average value of the thermal conductivity of the rice husk concrete varies depending on the binder dosage between 0.070 W/(m.K) and 0.171 W/(m.K). The evolution of the thermal conductivity as a function of the density and the cement dosage is linear
|
Page generated in 0.0642 seconds