• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 6
  • 5
  • 4
  • 2
  • 1
  • Tagged with
  • 46
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance of vegetated roadsides in removing stormwater pollutants

Rammohan, Pavitra 16 August 2006 (has links)
Stormwater runoff from highways can contain pollutants such as suspended solids, nitrogen and phosphorus, organic material, and heavy metals. Growing awareness leading to regulatory requirements reflects the need to protect the environment from highway runoff effects. The management practice discussed in this study is the use of vegetated roadsides. The primary objective of this research is to document the potential treatment values from vegetated roadsides typical of common rural highway cross sections in two Texas cities: Austin and College Station. Three sites in each city were examined in this study over a 14-month monitoring period. No significant difference between the edges of pavement pollutant concentrations were observed at any of the research sites in the two study areas. This allowed for direct comparisons of the vegetated roadsides and their associated site characteristics such as annual daily traffic (ADT), dry period, and rainfall intensity. The scatter plots of College Station data show that concentrations of total suspended solids (TSS), total Pb, and chemical oxygen demand (COD) in runoff are dependent on the antecedent dry period and decrease with longer dry periods. The results show that pollutant concentrations are not highly dependent on ADT. However, the results show that the number of vehicles during the storm (VDS) was evaluated and accepted as a satisfactory independent variable for estimating the loads of total Pb and TSS. The results of correlation analysis show that the concentrations of total Pb and chemical oxygen demand are significantly correlated with TSS levels. The findings indicate that nitrate concentrations in runoff is most dependent on the average daily traffic using the highway during the preceding dry period as well as the duration of that dry period. Sites 2 and 3 in College Station are steeper but outperformed Site 1 which has much flatter slopes. This could be accounted for by the poor vegetative cover (brown patches) at Site 1. In the Austin sites, the permeable friction course appeared to have a significant impact on the quality of runoff leaving the road surface. On the whole, the results of this study indicate that vegetated roadsides could be used as a management practice for controlling and treating stormwater runoff from Texas highways.
2

Performance of vegetated roadsides in removing stormwater pollutants

Rammohan, Pavitra 16 August 2006 (has links)
Stormwater runoff from highways can contain pollutants such as suspended solids, nitrogen and phosphorus, organic material, and heavy metals. Growing awareness leading to regulatory requirements reflects the need to protect the environment from highway runoff effects. The management practice discussed in this study is the use of vegetated roadsides. The primary objective of this research is to document the potential treatment values from vegetated roadsides typical of common rural highway cross sections in two Texas cities: Austin and College Station. Three sites in each city were examined in this study over a 14-month monitoring period. No significant difference between the edges of pavement pollutant concentrations were observed at any of the research sites in the two study areas. This allowed for direct comparisons of the vegetated roadsides and their associated site characteristics such as annual daily traffic (ADT), dry period, and rainfall intensity. The scatter plots of College Station data show that concentrations of total suspended solids (TSS), total Pb, and chemical oxygen demand (COD) in runoff are dependent on the antecedent dry period and decrease with longer dry periods. The results show that pollutant concentrations are not highly dependent on ADT. However, the results show that the number of vehicles during the storm (VDS) was evaluated and accepted as a satisfactory independent variable for estimating the loads of total Pb and TSS. The results of correlation analysis show that the concentrations of total Pb and chemical oxygen demand are significantly correlated with TSS levels. The findings indicate that nitrate concentrations in runoff is most dependent on the average daily traffic using the highway during the preceding dry period as well as the duration of that dry period. Sites 2 and 3 in College Station are steeper but outperformed Site 1 which has much flatter slopes. This could be accounted for by the poor vegetative cover (brown patches) at Site 1. In the Austin sites, the permeable friction course appeared to have a significant impact on the quality of runoff leaving the road surface. On the whole, the results of this study indicate that vegetated roadsides could be used as a management practice for controlling and treating stormwater runoff from Texas highways.
3

Vegetated Swales in Urban Stormwater Modeling and Management

White, Kyle Wallace 29 May 2012 (has links)
Despite the runoff reduction efficiencies recommended by various regulatory agencies, minimal research exists regarding the ability of vegetated swales to simultaneously convey and reduce runoff. This study assessed the effect water quality swales distributed among upstream sub-watersheds had on watershed hydrology. The study was also posed to determine how certain design parameters can be dimensioned to increase runoff reduction according to the following modeling scenarios: base, base check dam height, minimum check dam height, maximum check dam height, minimum infiltration rate, maximum infiltration rate, minimum Manning's n, maximum Manning's n, minimum longitudinal slope, and maximum longitudinal slope. Peak flow rate, volume, and time to peak for each scenario were compared to the watershed's existing and predevelopment conditions. With respect to the existing condition, peak flow rate and volume decreased for all scenarios, and the time to peak decreased for most scenarios; the counterintuitive nature of this result was attributed to software error. Overall, the sensitivity analysis produced results contrary to the hypotheses in most cases. The cause of this result can likely be attributed to the vegetated swale design and modeling approaches producing an over designed, under constrained, and/or over discretized stormwater management practice. / Master of Science
4

Hydraulic Resistance due to Emergent Wetland Vegetation

Piercy, Candice Dawn 22 April 2010 (has links)
Models to estimate hydraulic resistance due to vegetation in emergent wetlands are crucial to wetland design and management. Hydraulic models that consider vegetation rely on an accurate determination of a resistance parameter such as a friction factor or a bulk drag coefficient. At low Reynolds numbers typical of flows in wetlands, hydraulic resistance is orders of magnitude higher than fully turbulent flows and resistance parameters are functions of the flow regime as well as the vegetation density and structure. The exact relationship between hydraulic resistance, flow regime and vegetation properties at low-Reynolds number flows is unclear. The project goal was to improve modeling of emergent wetlands by linking vegetation and flow properties to hydraulic resistance. A 12.2-m x 1.2 m vegetated flume was constructed to evaluate seven models of vegetated hydraulic resistance through woolgrass (Scirpus cyperinus (L.) Kunth), a common native emergent wetland plant. Measurements of vegetation geometry and structure were collected after each set of flume runs. Study results showed at low stem-Reynolds numbers (<100), the drag coefficient is inversely proportional to the Reynolds number and can vary greatly with flow conditions. Empirical models that were developed from data collected in natural wetlands predicted flow velocity most accurately. Using data from this flume study, regression models were developed to predict hydraulic resistance. Results indicated stem Reynolds number, stem diameter, and vegetation area per unit volume were the best predictors of friction factor. Vegetation flexibility and water depth were also important parameters but to a lesser extent. The spatial distribution of hydraulic resistance was estimated in a small floodplain wetland near Stephens City, VA using the regression models developed from the flume data. MODFLOW was used to simulate a 4-hour flood event through the wetland. The vegetated open water surface was modeled as a highly conductive aquifer layer. On average, MODFLOW slightly underpredicted the water surface elevation. However, the model error was within the range of survey error. MODFLOW was not highly sensitive to small changes in the estimated surface hydraulic conductivity caused by small changes in vegetation properties, but large decreases in surface hydraulic conductivity dramatically raised the elevation of the water surface. / Ph. D.
5

The Dynamic Stormwater Reponse of a Green Roof

Martin, Bruce 03 March 2009 (has links)
Impervious surfaces negatively affect urban hydrology by altering the depth, frequency and seasonal distribution of stormwater runoff. To assess the imperviousness of green roofs, a mathematical model was developed to simulate the stormwater response of a hypothetical green roof. The model is based on the physical processes that affect the green roof stormwater response and uses historic climate data. The results show that green roof imperviousness fluctuated according to climate conditions and precipitation sequence. Only 29% of the total precipitation received by the green roof resulted in runoff, however, the response varied substantially when evaluated at a daily interval. Runoff was eliminated during 82% of days with rain and a higher proportion of runoff disturbances were eliminated during the spring and summer compared to the fall. In comparison to an impervious surface, the green roof showed a reduction in the depth and frequency of runoff thereby improving urban hydrology.
6

Flow characteristics in partially vegetated channel with homogeneous and heterogeneous layouts

Li, D., Huai, W., Guo, Yakun, Liu, M. 22 March 2022 (has links)
Yes / This study presents the experimental results of the flow characteristics, such as the flow adjustment, velocity profiles, mixing layer, and the momentum exchange, in the partially vegetated channel with homogeneous and heterogeneous layouts. Three cases are considered, including two homogeneous canopies with uniform sparse and dense vegetation patches respectively, and a heterogeneous canopy consisting of alternating patches of both densities. Results show that heterogeneous canopy requires a longer adjustment distance to reach the quasi-equilibrium region, compared with the homogenous canopy of the same density. In heterogeneous canopy flow, the mixing layer width and the momentum thickness fluctuates with the alternation of vegetation density. The increased values for these two parameters compared to those values for the homogeneous canopies indicate that the greater resistance and momentum loss occur for the heterogeneous layout. A wavy region of the enhanced in-plane turbulence kinetic energy (TKE) is observed in the heterogeneous canopy, suggesting a comparatively more chaotic flow condition, whereas the contours of in-plane TKE are smooth in homogeneous canopies. The presence of the coherent structures in heterogeneous canopy is identified by spectral analysis and the quasi-periodic fluctuations of velocities. The Reynolds stress associated with the coherent structures is found to be the dominator of the contribution to the total Reynolds stress. The comparison between the homogenous canopies of different density is also conducted. These results will be of practical importance for the design of vegetation layouts in water ecological restoration projects and for river management. / National Natural Science Foundation of China (grant numbers 52020105006 and 11872285) and the Open Funding of State Key Laboratory of Water Resources and Hydropower Engineering Science (WRHES), Wuhan University (Project number 2018HLG01)
7

Nutrient Cycling Dynamics and Succession in Green Roof Ecosystems

Mitchell, Mark E. 15 December 2017 (has links)
No description available.
8

A study of overbank flows in non-vegetated and vegetated floodplains in compound meandering channels

Ismail, Zulhilmi January 2007 (has links)
Laboratory experiments concerning stage-discharge, flow resistance, bedforms, sediment transport and flow structures have been carried out in a meandering channel with simulated non-vegetated and vegetated floodplains for overbank flow. The effect of placing solid blocks in different arrangements as a model of rigid, unsubmerged floodplain vegetation on a floodplain adjacent to a meandering channel is considered. The aim was to investigate how density and arrangements of floodplain vegetation influence stage-discharge, flow resistance, sediment transport and flow behaviours. Stage-discharge curves, Manning's n and drag force FD are determined over 165 test runs. The results from the laboratory model tests show that the placing of solid blocks along some part of the bend sections has a significant effect on stage-discharge characteristics. The change in stage-discharge by the blocks is compared using different arrangements, including the non-vegetated floodplains case. The experimental results show that the presence of energy losses due to momentum exchange between the main channel and the floodplain as well as the different densities of the blocks on a floodplain induce additional flow resistance to the main channel flow, particularly for shallow overbank flows. In general, the results show that the density and arrangement of blocks on the floodplains are very important for stage-discharge determination and, in some cases, for sediment transport rates, especially for a mobile main channel. Also, the correction parameter, a is introduced in order to understand the effects of blocks and bedforms on the force balance equation. By applied the correction factor c; a stagedischarge rating curve can be estimated when the avalue is calibrated well. Telemac 2D and 3D were applied to predict mean velocity, secondary flow and turbulent kinetic energy. Telemac computations for non-vegetated and vegetated floodplain cases in a meandering channel generally give reasonably good predictions when compared with the measured data for both velocity and boundary shear stress in the main channel. Detailed analyses of the. predicted flow variables were therefore carried out in order to understand mean flow mechanisms and secondary flow structures in compound meandering channels. The non-vegetated and two different cases of vegetated floodplain for different relative depths were considered. For the arrangement on a non-vegetated floodplain shows how the shearing of the main channel flow as the floodplain flow plunges into and over the main channel influences the mean and turbulent flow structures, particularly in the cross-over region. While applying vegetated floodplain along a cross-over section confirmed that the minimum/reduction shearing of the main channel flow by the floodplain flow plunging into and over the main channel is observed from the cross-sectional distributions of the streamwise velocity (U), lateral velocity (V), and secondary flow vectors. In addition to that, the vegetated floödplain along the apex bend region shows a small velocity gradient within the bend apex region. However, strong secondary flow in the cross-over section suggested that the flow interaction was quite similar to the non vegetation case in the cross-over section region.
9

Evaluation of vegetated filter strips for attenuation of pollutants resulting from military activities

Satchithanantham, Sanjayan January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Stacy L. Hutchinson / A field study was conducted at Fort Riley, Kansas from late spring to early winter of 2007 to investigate the ability of vegetated filter strips (VFS) to attenuate pollutants resulting from military activities, the impact of different management practices (i.e. burning and mowing) on VFS performance, and the effects of vegetation on hydrological components of VFS, especially infiltration and runoff. Two native tallgrass VFS sites, each comprising three plots, located in the military training area of Fort Riley were used for this study. Fifteen rainfall events were simulated on each site along with overland application of water containing nitrogen (N), phosphorous (P) and sediment. At the end of the season both VFS were managed by mowing or burning and a final rainfall simulation was done. Variables including rainfall, infiltration, runon, runoff, above ground biomass density, pollutant concentrations of runon and runoff, and soil moisture were measured and used in the data analysis. Hydrograph development, water balance, and mass balance calculations were carried out in order to calculate the pollutant trapping efficiencies (PTE) of the VFS. Statistical analysis was done by fitting several regression models. Mean comparisons were also done for variables and variance was decomposed into time, plot and site effects at an alpha = 0.05. Results showed that on average the VFS attenuated 84 % of total nitrogen, 24 % of total phosphorous and 95 % of sediments. Regression models showed that infiltration percentage and biomass density have a positive correlation with PTE. Runoff volume and PTE were negatively correlated. Soil moisture was negatively correlated with infiltration and time to runoff. With increasing biomass density, percentage of water infiltrating and time of concentration increased. Management practices, especially burning, tended to reduce PTE. Also, both management practices reduced infiltration percentage and time of concentration. PTE reduced with intensifying rainfall and increased when rainfall faded off. Phosphorous was the most sensitive pollutant for intense storm conditions followed by nitrogen, while sediment was comparatively insensitive.
10

Laboratory and field trials of the ability of vegetated porous paving to remediate pollutants

Mayer, M. January 2013 (has links)
Flooding is impossible to prevent completely, consequences of excess water can however, be reduced and often avoided via flood risk management. With the increase in impermeable surfaces, approaches that have the intention of imitating natural drainage to manage storm-water are known as Sustainable (Urban) Drainage Systems (SUDS). Pollutants from vehicles have been identified as a concern in the urban environment, with origins including exhaust emissions, engine oil leakage and erosion of vehicle components. Investigation of vegetated parking surfaces (VPS) to limit the impact of pollutants are scarce, therefore this study aims to determine pollution tolerance of grass species for use in VPSs, prior to investigating the effects that vehicles have on a vegetated surfaces and alternative methods in which to analyse them. A pot trial investigated effects of increasing oil concentrations on the growth of four grass species. F. rubra L. was found to tolerate contamination to a higher degree than the other species and L. perenne L. produced more cumulative biomass throughout the investigation. A parallel study determined that Ca, Cu, K, Mg, Mo, P and Zn accumulated in grass shoots, indicating that F. rubra L. and L. perenne L. may be suitable for further analysis. field trial focused on a regularly-used L. perenne L.-covered VPS at a local school, analysing the influence of vehicles on vegetated parking bays. Compaction and mean element concentrations increased across the VPS, with distance from the roadside. Use of mineral magnetism as a proxy for geochemical detection did not prove successful as no significant correlation was identified between magnetic susceptibility (χ) and element concentration. Use of GIS provided this study with an alternative method for data presentation. Usually covering large scale analyses, an interactive geovisual map of geochemical dispersal and compaction across the VPS provided a novel method of visualising results from an investigation of this scale.

Page generated in 0.0366 seconds