• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Fabrication, and Testing of a New Small Wind Turbine Blade

Song, Qiyue 01 May 2012 (has links)
A small wind turbine blade was designed, fabricated and tested in this study. The power performance of small horizontal axis wind turbines was simulated in detail using modified blade element momentum methods (BEM). Various factors such as tip loss, drag coefficient, and wake were considered. The simulation was validated by experimental data collected from a small wind turbine Bergey XL 1.0. A new blade was designed for the Bergey XL 1.0 after comparing three types of aerodynamic blade structures and their related performance, and then the detailed blade structure was determined. The performance of the new rotor at different additional pitch angles was simulated and compared with the original Bergey XL 1.0 rotor. To fabricate prototypes of the new blades, a resin transfer moulding (RTM) system was designed and built. Three blades were fabricated successfully and installed on the hub of an existing Bergey XL 1.0. In a vehicle-based test system, the new blades were tested at the original designed pitch angle, plus at additional 5° and 9° pitch angles. The +5° rotor reached maximum power of 1889 W at wind velocity 13.6 m/s. The +9° rotor performed over a wider wind velocity range and output slightly lower power than the original Bergey XL 1.0. The new blades have better aerodynamic performance than original Bergey XL 1.0. / Ontario Ministry of Agriculture and Rural Affairs (OMAFRA) New Directions Research Program and the National Sciences and Engineering Research Council (NSERC) Chair in Environmental Design Engineering at the University of Guelph

Page generated in 0.0815 seconds