• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SELF-POWERED PIEZOELECTRIC SENSORS FOR VEHICLE HEALTH MONITORING

LINDSEY, TIMOTHY J. 01 July 2004 (has links)
No description available.
2

LONG TERM VEHICLE HEALTH MONITORING

Cridland, Doug, Dehmelt, Chris 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / While any vehicle that is typically part of a flight test campaign is heavily instrumented to validate its performance, long term vehicle health monitoring is performed by a significantly reduced number of sensors due to a number of issues including cost, weight and maintainability. The development and deployment of smart sensor buses has reached a time in which they can be integrated into a larger data acquisition system environment. The benefits of these types of buses include a significant reduction in the amount of wiring and overall system complexity by placing the appropriate signal conditioners close to their respective sensors and providing data back over a common bus, that also provides a single power source. The use of a smart-sensor data collection bus, such as IntelliBus™1 or IEEE-1451, along with the continued miniaturization of signal conditioning devices, leads to the interesting possibility of permanently embedding data collection capabilities within a vehicle after the initial flight test effort has completed, providing long-term health-monitoring and diagnostic functionality that is not available today. This paper will discuss the system considerations and the benefits of a smart sensor based system and how pieces can be transitioned from flight qualification to long-term vehicle health monitoring in production vehicles.

Page generated in 0.0858 seconds