171 |
Optimizing mobile multimedia content deliverySeung, Yousuk 13 September 2013 (has links)
With the advent of mobile Internet the amount of time people spend with multimedia applications in the mobile environment is surging and demand for high quality multimedia data over the Internet in the mobile environment is growing rapidly. However the mobile environment is significantly more unfriendly than the wired environment for multimedia applications in many ways. Network resources are limited and the condition is harder to predict. Also multimedia applications are generally delay intolerant and bandwidth demanding, and with users moving, their demand could be much more dynamic and harder to anticipate. Due to such reasons many existing mobile multimedia applications show unsatisfactory performance in the mobile environment. We target three multimedia content delivery applications and optimize with limited and unpredictable network conditions typical in the mobile Internet environment. Vehicular networks have emerged from the strong desire to communicate on the move. We explore the potential of supporting high-bandwidth applications such as video streaming in vehicular networks. Challenges include limited and expensive cellular network, etc. Internet video conferencing has become popular over the past few years, but supporting high-quality large video conferences at a low cost remains a significant challenge due to stringent performance requirements, limited and heterogeneous client. We develop a simple yet effective Valiant multicast routing to select application-layer routes and adapt streaming rates according to dynamically changing network condition in a swift and lightweight way enough to be implemented on mobile devices. Bitrate adaptive video streaming is rapidly gaining popularity. However recent measurements show weaknesses in bitrate selection strategies implemented in today's streaming players especially in the mobile environment. We propose a novel rate adaptation scheme that classifies the network condition into stable and unstable periods and optimizes video quality with different strategies based on the classification. / text
|
172 |
Efficient safety message dissemination methods in vehicular adhoc networksCho, Jinyoun 08 June 2015 (has links)
The methods for efficient safety message dissemination in VANETs were proposed. First, the method for using multi-channel was proposed. Using the proposed multi-channel method (divide-and-deliver algorithm), the safety message was delivered to the target device with less delay compared to the traditional single-channel method. This method showed resilient performance even in poor wireless channels compared to the single-channel method. Second, to improve low reliability in low vehicle density situations, the enhanced divide-and-deliver algorithm was proposed. The network coding was a key technique to the enhancement. For the efficient use of network coding, rigorous analysis was conducted and an algorithm was proposed to change the number of network coding packets adaptively by the vehicle densities. Finally, the method for delivering safety messages to multi-direction was proposed. This multi-vehicle selection broadcast (MSB) algorithm avoided the collision between multiple rebroadcasts among vehicles and removed unnecessary packets by using backoff slots. The contributions of this research include reducing delay and increasing reliability for the dissemination of safety messages.
|
173 |
Test Environment Design for Wireless Vehicle CommunicationsPeter Lerchbaumer, Alejandro Ochoa January 2007 (has links)
The research in wireless communications and in-vehicle computing systems has opened up new fields of applications for transportation systems. Vehicular ad hoc networks (VANETs) emerge as a contribution to the solution of providing safer and more efficient roads and to increase passenger safety. This thesis treats different issues that influence the performance of wireless vehicle communication systems and it proposes a general design procedure for the construction of a test environment for VANETs. A comprehensive survey of the different parameters that affect the system performance in the field of wireless vehicle communications is provided. These parameters are then analysed and quantified to serve as guidelines when identifying and designing the different components of the test environment. One such component is a simulator that enables VANET performance evaluation and allows identification of bottlenecks in the network functionality. In addition, suggestions for a hardware platform and an operating system for the development of a suitable on-board test-bed for performance measurements are presented. The design procedure of such a test environment is intended to be used by researchers and engineers working in the field of wireless communications and ad hoc networking with special regard to the automotive sector.
|
174 |
Modelling and Validation of a Truck Cooling SystemNordlander, Erik January 2008 (has links)
In the future, new challenges will occur during the product development in the vehicular industry when emission legislations getting tighter. This will also affect the truck cooling system and therefore increase needs for analysing the system at different levels of the product development. Volvo 3P wishes for these reasons to examine the possibility to use AMESim as a future 1D analysis tool. This tool can be used as a complement to existing analysis methods at Volvo 3P. It should be possible to simulate pressure, flow and heat transfer both steady state and transient. In this thesis work a cooling system of a FH31 MD13 520hp truck with an engine driven coolant pump is studied. Further a model of the cooling system is built in AMESim together with necessary auxiliary system such as oil circuits. The model is validated using experimental data that have been produced by Volvo 3P at the Gothenburg facility. The results from validation and other simulations show that the model gives a good picture of the cooling system. It also gives information about pressure, flow and heat transfer in steady state conditions. Further a design modification is done, showing how a change affects the flow in the cooling system. The conclusion is that a truck cooling system can be built and simulated in AMESim. Further, it shows that AMESim meets the requirements Volvo 3P in Gothenburg has set up for the future 1D analysis tool and thereby AMESim is a good complement to the already existing analysis method.
|
175 |
An LTE implementation based on a road traffic density modelRashid, Muhammad Asim January 2013 (has links)
The increase in vehicular traffic has created new challenges in determining the behavior of performance of data and safety measures in traffic. Hence, traffic signals on intersection used as cost effective and time saving tools for traffic management in urban areas. But on the other hand the signalized intersections in congested urban areas are the key source of high traffic density and slow traffic. High traffic density causes the slow network traffic data rate between vehicle to vehicle and vehicle to infrastructure. To match up with the emerging technologies, LTE takes the lead with good packet delivery and versatile to changes in the network due to vehicular movements and density. This thesis is about analyzing of LTE implementation based on a road traffic density model. This thesis work is aimed to use probability distribution function to calculate density values and develop a real traffic scenario in LTE network using density values. In order to analyze the traffic behavior, Aimsun simulator software has been used to represent the real situation of traffic density on a model intersection. For a realistic traffic density model field measurement were used for collection of input data. After calibration and validation process, a close to realty results extracted and used a logistic curve of probability distribution function to find out the density situation on each part of intersection. Similar traffic scenarios were implemented on MATLAB based LTE system level simulator. Results were concluded with the whole traffic scenario of 90 seconds and calculating the throughput at every traffic signal time and section. It is quite evident from the results that LTE system adopts the change of traffic behavior with dynamic nature and allocates more bandwidth where it is more needed.
|
176 |
Multi-Sensor Data Fusion for Vehicular Navigation ApplicationsIqbal, Umar 08 August 2012 (has links)
Global position system (GPS) is widely used in land vehicles but suffers deterioration in its accuracy in urban canyons; mostly due to satellite signal blockage and signal multipath. To obtain accurate, reliable, and continuous positioning solutions, GPS is usually augmented with inertial sensors, including accelerometers and gyroscopes to monitor both translational and rotational motions of a moving vehicle. Due to space and cost requirements, micro-electro-mechanical-system (MEMS) inertial sensors, which are typically inexpensive are presently utilized in land vehicles for various reasons and can be used for integration with GPS for navigation purposes. Kalman filtering (KF) usually used to performs this integration. However, the complex error characteristics of these MEMS based sensors lead to divergence of the positioning solution. Furthermore, the residual GPS pseudorange correlated errors are always ignored, thus reducing the GPS overall positioning accuracy. This thesis targets enhancing the performance of integrated MEMS based INS/GPS navigation systems through exploring new non-linear modelling approaches that can deal with the non-linear and correlated parts of INS and GPS errors. The research approach in this thesis relies on reduced inertial sensor systems (RISS) incorporating single axis gyroscope, vehicle odometer, and accelerometers is considered for the integration with GPS in one of two schemes; either loosely-coupled where GPS position and velocity are used for the integration or tightly-coupled where GPS pseudorange and pseudorange rates are utilized. A new method based on parallel cascade identification (PCI) is developed in this research to enhance the performance of KF by modelling azimuth errors for the RISS/GPS loosely-coupled integration scheme. In addition, PCI is also utilized for the modelling of residual GPS pseudorange correlated errors. This thesis develops a method to augment a PCI – based model of GPS pseudorange correlated errors to a tightly-coupled KF. In order to take full advantage of the PCI based models, this thesis explores the Particle filter (PF) as a non-linear integration scheme that is capable of accommodating the arbitrary sensor characteristics, motion dynamics, and noise distributions. The performance of the proposed methods is examined through several road test experiments in land vehicles involving different types of inertial sensors and GPS receivers. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2012-07-31 16:09:16.559
|
177 |
MAZACORNET: Mobility Aware Zone based Ant Colony Optimization Routing for VANETRana, Himani 18 December 2012 (has links)
Vehicular Ad hoc Networks (VANET) exhibit highly dynamic behavior with high mobility and random network topologies. The performance of Transmission Control Protocols in such wireless ad hoc networks is plagued by a number of problems:
frequent link failures, scalability, multi-hop data transmission and data loss. To
address these VANET routing issues, I have used the ideas from swarm intelligence.
The Ant Colony Optimization (ACO), which is a branch of swarm intelligence, is the main source of my inspiration. I have designed an ant-based routing algorithm which addresses routing issues prevalent in VANETs: adaptivity, robustness and scalability. One attractive feature of ACO is that they provide multiple routes from source to destination, resulting in more robust network. In this work, together with ACO, I have used the ideas from zone routing protocols to develop my algorithm:
Mobility Aware Zone based Ant Colony Optimization Routing for VANET that exhibits locality and scalability.
|
178 |
A RELIABILITY-BASED ROUTING PROTOCOL FOR VEHICULAR AD-HOC NETWORKSBernsen, James 01 January 2011 (has links)
Vehicular Ad hoc NETworks (VANETs), an emerging technology, would allow vehicles to form a self-organized network without the aid of a permanent infrastructure. As a prerequisite to communication in VANETs, an efficient route between communicating nodes in the network must be established, and the routing protocol must adapt to the rapidly changing topology of vehicles in motion. This is one of the goals of VANET routing protocols. In this thesis, we present an efficient routing protocol for VANETs, called the Reliable Inter-VEhicular Routing (RIVER) protocol. RIVER utilizes an undirected graph that represents the surrounding street layout where the vertices of the graph are points at which streets curve or intersect, and the graph edges represent the street segments between those vertices. Unlike existing protocols, RIVER performs real-time, active traffic monitoring and uses this data and other data gathered through passive mechanisms to assign a reliability rating to each street edge. The protocol then uses these reliability ratings to select the most reliable route. Control messages are used to identify a node’s neighbors, determine the reliability of street edges, and to share street edge reliability information with other nodes.
|
179 |
Verifying Physical Endpoints to Secure Digital SystemsStuder, Ahren M. 01 May 2011 (has links)
The proliferation of electronic devices supporting sensing, actuation, and wireless communication enables the monitoring and/or control of a variety of physical systems with digital communication. Such “cyber physical systems” blur the boundaries of the digital and physical worlds, where correct information about the physical world is needed for the correct operation of the digital system. Often in these systems the physical source or destination of information is as important as the information itself. However, the omni-directional and invisible nature of wireless communication makes it difficult to determine communication endpoints. This allows a malicious party to intercept wireless messages or pose as other entities in the system. As such, these systems require new protocols to associate the endpoints of digital communication with physical entities.
Traditional security approaches that associate cryptographic keys with names can help verify endpoints in static systems where a string accurately describes the role of a device. In other systems, the role of a device depends on its physical properties, such as location, which change over time. This dynamic nature implies that identification of an endpoint based on a static name is insufficient. Instead, we can leverage devices’ sensing and actuation capabilities to verify the physical properties and determine the physical endpoints of communication. We investigate three different scenarios where the physical source and/or destination is important and propose endpoint verification techniques: verifying the physical endpoints during an exchange between two smartphones, verifying the receiver of information is in a physical space to enable location-based access control, and verifying the source of information to protect Vehicle-to-Vehicle (V2V) applications. We evaluate our proposals in these systems and show that our solutions fulfill the security requirements while utilizing existing hardware.
Exchanging Information Between Smartphones Shake on it (SHOT) allows users to verify the endpoints during an exchange of information between two smartphones. In our protocol, the phones use their vibrators and accelerometers to establish a human-observable communication channel. The users hold the phones together while the phones use this channel to bootstrap and verify the authenticity of an exchange that occurs over the higher-bandwidth wireless channel. Users can detect the injection of information from other devices as additional vibrations, and prevent such attacks. Our implementation of SHOT for the DROID smartphone is able to support sender and receiver verification during an exchange between two smartphones in 15 seconds on average.
Location-Based Access Control We propose using location-based access control to protect sensitive files on laptops, without requiring any effort from the user to provide security. With a purely wireless electronic system, verifying that a given device is in a physical space is a challenge; either the definition of the physical space is vague (radio waves can travel beyond walls) or the solution requires expensive hardware to measure a message’s time of flight. Instead, we use infrared as a signal that walls can contain. We develop key derivation protocols that ensure only a receiver in the physical room with access to the signal can derive the key. We implement a system that uses the laptop’s webcam to record the infrared signal, derive a key, and decrypt sensitive files in less than 5 seconds.
Source Verification for V2V Networks A number of V2V applications use information about nearby vehicles to prevent accidents or reduce fuel consumption. However, false information about the positioning of vehicles can cause erroneous behavior, including accidents that would not occur in the absence of V2V. As such, we need a way to verify which vehicle sent a message and that the message accurately describes the physical state of that vehicle. We propose using LED lights on vehicles to broadcast the certificate a vehicle is currently using. Receivers can use onboard cameras to film the encoding of the certificate and estimate the relative location of the vehicle. This visual channel allows a receiver to associate a physical vehicle at a known location with the cryptographic credentials used to sign a location claim. Our simulations indicate that even with a pessimistic visual channel, visual verification of V2V senders provides sufficient verification capabilities to support the relevant applications.
|
180 |
MAZACORNET: Mobility Aware Zone based Ant Colony Optimization Routing for VANETRana, Himani 18 December 2012 (has links)
Vehicular Ad hoc Networks (VANET) exhibit highly dynamic behavior with high mobility and random network topologies. The performance of Transmission Control Protocols in such wireless ad hoc networks is plagued by a number of problems:
frequent link failures, scalability, multi-hop data transmission and data loss. To
address these VANET routing issues, I have used the ideas from swarm intelligence.
The Ant Colony Optimization (ACO), which is a branch of swarm intelligence, is the main source of my inspiration. I have designed an ant-based routing algorithm which addresses routing issues prevalent in VANETs: adaptivity, robustness and scalability. One attractive feature of ACO is that they provide multiple routes from source to destination, resulting in more robust network. In this work, together with ACO, I have used the ideas from zone routing protocols to develop my algorithm:
Mobility Aware Zone based Ant Colony Optimization Routing for VANET that exhibits locality and scalability.
|
Page generated in 0.0565 seconds