• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reliable Broadcast of Safety Messages in Vehicular Ad hoc Networks

Hassanzadeh, Farzad 24 February 2009 (has links)
Broadcast communications is critically important in vehicular networks. Many safety applications need safety warning messages to be broadcast to all vehicles present in an area. In this thesis, we propose a novel repetition-based broadcast protocol based on ``optical orthogonal codes.'' Optical orthogonal codes are used because of their ability to reduce the possibility of collision. We present a detailed mathematical analysis for obtaining the probability of success and the average delay. Furthermore, we propose to use coding to increase network throughput, and ``adaptive elimination'' of potentially colliding transmissions to further increase reliability. We show, by analysis and simulations, that the proposed protocol outperforms existing repetition-based ones and provides reliable broadcast communications and can reliably deliver safety messages under load conditions deemed to be common in vehicular environments. We also show that the proposed protocol is able to provide different levels of quality of service.
2

Reliable Broadcast of Safety Messages in Vehicular Ad hoc Networks

Hassanzadeh, Farzad 24 February 2009 (has links)
Broadcast communications is critically important in vehicular networks. Many safety applications need safety warning messages to be broadcast to all vehicles present in an area. In this thesis, we propose a novel repetition-based broadcast protocol based on ``optical orthogonal codes.'' Optical orthogonal codes are used because of their ability to reduce the possibility of collision. We present a detailed mathematical analysis for obtaining the probability of success and the average delay. Furthermore, we propose to use coding to increase network throughput, and ``adaptive elimination'' of potentially colliding transmissions to further increase reliability. We show, by analysis and simulations, that the proposed protocol outperforms existing repetition-based ones and provides reliable broadcast communications and can reliably deliver safety messages under load conditions deemed to be common in vehicular environments. We also show that the proposed protocol is able to provide different levels of quality of service.

Page generated in 0.3699 seconds