• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fundamental heat transfer studies in grid generated homogeneous turbulence

Dakos, Thomas January 1990 (has links)
No description available.
2

On some positive effects of swirling flow for the continuous cast mould billets

Kholmatov, Shavkat January 2007 (has links)
<p>Continuous caster moulds are the last and most important stage in the steelmaking process, where inclusions can either be generated or removed. With increasing casting speed using conventional immersion nozzles critical problems, such as unstable bulk mould flow have been noticed. Mould flux entrapment due to vortex and shearing action from the oscillating surface waves have become of particular concern. It is therefore necessary to have a calm inlet flow at the entrance of the mould. Recently, it has been acknowledged that a swirl blade placed at the upstream of the immersion nozzle effectively resolves the problems arising from unstable bulk mould flow. Therefore, to increase the knowledge of effect of swirling flow on the flow pattern in the mould, fundamental mathematical models of a billet mould equipped with a swirl blade in the nozzle have been developed. The model was used to study the effect of divergent angle of the immersion nozzle and mould aspect ratio on the flow field and temperature distribution inside billets moulds. Data from water model experiments were used to verify the mathematical model predictions. A fairly good agreement was found between physical modeling data and predictions, which ensured that the numerical model is reliable. Thereafter, the differences between square and round billet moulds were studied. Next, the effect of changing aspect ratio of the rectangular mould on the fluid flow and heat transfer, while keeping mould surface area constant, was studied. Two types of immersion nozzles, bottomless and conventional, were also analyzed during the research. The model moulds were changed gradually from a square billet with an aspect ratio of 1x1 to a rectangular billet with an aspect ratio of 3x1. First, the temperature and velocity distributions were calculated. Later, unsteady calculations were done to determine velocity fluctuations on the meniscus level for two types of nozzles and several moulds geometries.</p>
3

On some positive effects of swirling flow for the continuous cast mould billets

Kholmatov, Shavkat January 2007 (has links)
Continuous caster moulds are the last and most important stage in the steelmaking process, where inclusions can either be generated or removed. With increasing casting speed using conventional immersion nozzles critical problems, such as unstable bulk mould flow have been noticed. Mould flux entrapment due to vortex and shearing action from the oscillating surface waves have become of particular concern. It is therefore necessary to have a calm inlet flow at the entrance of the mould. Recently, it has been acknowledged that a swirl blade placed at the upstream of the immersion nozzle effectively resolves the problems arising from unstable bulk mould flow. Therefore, to increase the knowledge of effect of swirling flow on the flow pattern in the mould, fundamental mathematical models of a billet mould equipped with a swirl blade in the nozzle have been developed. The model was used to study the effect of divergent angle of the immersion nozzle and mould aspect ratio on the flow field and temperature distribution inside billets moulds. Data from water model experiments were used to verify the mathematical model predictions. A fairly good agreement was found between physical modeling data and predictions, which ensured that the numerical model is reliable. Thereafter, the differences between square and round billet moulds were studied. Next, the effect of changing aspect ratio of the rectangular mould on the fluid flow and heat transfer, while keeping mould surface area constant, was studied. Two types of immersion nozzles, bottomless and conventional, were also analyzed during the research. The model moulds were changed gradually from a square billet with an aspect ratio of 1x1 to a rectangular billet with an aspect ratio of 3x1. First, the temperature and velocity distributions were calculated. Later, unsteady calculations were done to determine velocity fluctuations on the meniscus level for two types of nozzles and several moulds geometries. / <p>QC 20101110</p>
4

Mélange d'un scalaire dans un jet turbulent : influence d'un obstacle. / Scalar mixing in turbulent jets : influence of an obstacle

Ducasse, Marie laure 12 December 2012 (has links)
Cette étude s'intéresse aux risques associés à la formation d'une ATmosphère EXplosive (ATEX) née d'une fuite d'hydrogène et de sa dispersion dans l'air ambiant. La fuite a été modélisée par un jet turbulent à densité variable libre, impactant sur une sphère de diamètre 20mm ou sur une plaque plane. Dans un premier temps, les champs de vitesses et de concentration ont été obtenus expérimentalement en proche sortie grâce à des mesures de Vélocimétrie par Images de Particules (PIV) et de Fluorescence Induite par Plan Laser sur l'acétone (PLIF). La turbulence et le mélange ont été caractérisés pour le cas d'un jet libre ou en présence d'un obstacle. A partir de ces mesures, la structure générale de l'écoulement a été étudiée à partir des champs moyens et fluctuants par comparaison avec les données de la bibliographie. Puis, les données issues des fluctuations ont été analysées statistiquement par l'étude des fonctions de densité de probabilité du scalaire. Ces travaux se sont poursuivis avec la mise en relation des résultats expérimentaux avec ceux obtenues par des simulations numériques DNS (Direct Numerical Simulation) utilisant la méthode Boltzmann sur Réseau (LBM) d'un scalaire passif dans un jet d'air. Cette étude a permis de recueillir et d'analyser des données supplémentaires sur le mélange d'un jet à masse volumique variable libre ou impactant. Ces données sont directement applicables à la maitrise des risques liés aux fuites d'hydrogène. / This study examines the risks associated with the formation of an explosive atmosphere from a hydrogen leak and its dispersion into the air. We considered the leak as a turbulent jet with density variable, free and impinging a $20,mm$ diameter sphere or a flat plate. Firstly, velocity and scalar fields have been measured experimentally in the near field through Particle Image Velocimetry (PIV) and acetone Planar Laser Induced Fluorescence (LIF). Turbulence and mixing have been defined in the case of free jet and impinging jet. From this measurements, the flow structure has been presented from the mean and fluctuating flow measurements by comparison with literature data. Next, the fluctuation scalar fields are studied with the probability density function method. Finally, a comparison has been conducted between the experiments and direct numerical simulation (DNS) of turbulence based on the lattice Boltzmann method (LBM) for passive scalar in air jet. This study is gathering and analyzing data on the mixing of jet with density variable, free and impinging jet. Such data is directly useful to identify and control risks incurred due to hydrogen leak.

Page generated in 0.1123 seconds