• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 22
  • Tagged with
  • 55
  • 15
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Protocolo de calibración de la concentración parcial de oxígeno en ventiladores pulmonares

Mendoza Barrenechea, Saúl Enrique 02 September 2011 (has links)
Actualmente en el Perú, a diferencia de otros países latinoamericanos, los centros de salud no cuentan con un Sistema de Mantenimiento Preventivo de sus equipos médicos. La calibración de equipos médicos no es una práctica frecuente ni obligatoria ya que se carece de un marco legal que exija el cumplimiento de normas internacionales de mantenimiento y calibración. El mantenimiento continuo de estos equipos es fundamental ya que, en muchos casos, sirven para mantener con vida a un ser humano. Dentro de este grupo de equipos médicos críticos se encuentra el ventilador pulmonar, que como se explicará más adelante es empleado para proveer de soporte respiratorio a pacientes que no puedan asumir la función natural de respiración. Más aún, los que trabajan en UCI (Unidad de Cuidados Intensivos) toman control completo de esta tarea, es decir, del correcto funcionamiento del ventilador depende la vida del paciente. Entonces es indispensable que un dispositivo como éste se encuentre en perfecto estado, y esto sólo se logra realizando un mantenimiento tanto preventivo como correctivo a lo largo de la vida útil del equipo. Sin embargo, la implementación de un sistema de mantenimiento y calibración se haya suscrito dentro de limitaciones tales como los recursos económicos con que cuente el centro de salud, la disponibilidad del personal técnico calificado, entre otras cosas. El presente trabajo de investigación pretende aportar a la problemática descrita con el diseño de un protocolo de calibración del parámetro de FiO2 en el ventilador pulmonar; para realizar las pruebas correspondientes se cuenta con el analizador de oxígeno, el cual será usado como instrumento de medición. La norma IEC 60601-2-12 “Requisitos particulares para la seguridad de los ventiladores pulmonares” ha sido aplicada al desarrollo de este documento para proveerlo de un marco normativo internacional. Todas las pruebas y ensayos descritos en este documento fueron desarrollados en el Hospital Dos de Mayo con la colaboración del Departamento de Mantenimiento de Equipos Médicos y la Unidad de Cuidados Intensivos de dicha institución.
42

Diseño de un banco de ensayos para ventiladores axiales de hasta 6000 M3/H

Enriquez Tipismana, David Emilio 23 May 2014 (has links)
El presente proyecto de tesis se encarga de desarrollar los temas concernientes al diseño de un banco de ensayos para ventiladores axiales de hasta 6000 m3/h., el cual está conformado por un conducto de 500 mm de diámetro de acero galvanizado y una longitud de 5m, el cual cuenta con una sección de transición, que tiene una forma de cono truncado, que permite adaptarse a ventiladores de distintos diámetros y formas. La disposición de la instrumentación (tubos de Pitot, manómetros, etc.) está realizada respetando las distancias recomendadas por las especificaciones de las Normativas Técnicas que regula el ensayo de ventiladores. En el primer capítulo se expone el estado del arte del diseño del banco. Se ha tomado como referencia la norma ISO 5810 “Industrial fans – Perfomance testing using standardized airaways” y la Norma AMCA 210-85: “Laboratory Methods of Testing Fans for Aerodynamic Performance Rating “, basadas en los parámetros y consideraciones para el correcto diseño y funcionamiento del banco, de esta forma obtener las curvas características del ventilador. En el segundo capítulo se expone el diseño y cálculos generales considerados para el desarrollo del banco, así como la selección de los componentes y accesorios. El banco está caracterizado por tener una aspiración libre y un conducto a la salida y un enderezador de flujo que permite estabilizar el flujo, y así disminuir, al menos en parte, la turbulencia generada. De esta manera se obtiene una mejor realización de los ensayos cuando se miden los valores de presión, caudal y temperatura. En el tercer capítulo se muestra el presupuesto del proyecto, realizado en función de los precios del mercado nacional, de esta forma se analiza la viabilidad económica del mismo. Luego se muestran las conclusiones, recomendaciones y la bibliografía utilizada.
43

Desempenho dos ventiladores convencionais em ventilação não invasiva: impacto da máscara total face® em modelo mecânico / The performance of intensive care (ICU) ventilators during noninvasive ventilation (NIV) using the total face mask® (TFM). A bench model study

Nakamura, Maria Aparecida Miyuki 05 September 2008 (has links)
INTRODUÇÃO: O sucesso da terapia com ventilação não invasiva com pressão positiva (VNIPP) está associada com a escolha adequada da interface. A máscara Total face® (TF) é considerada mais confortável, porém possui grande espaço morto (875 ml) e vazamento constante elevado. Os ventiladores próprios para ventilação mecânica invasiva (convencionais) têm sido utilizados, habitualmente, para ventilação não invasiva em ambiente de UTI. OBJETIVOS: Avaliar o desempenho de nove ventiladores convencionais com uso da máscara TF e compará-los com um ventilador próprio para VNIPP (Respironics BiPAP Vision). MÉTODOS: Utilizou-se um modelo com dois simuladores mecânicos do sistema respiratório conectados a uma cabeça de manequim onde foi adaptada a máscara TF que foi conectada aos ventiladores testados. O esforço inspiratório foi simulado utilizando-se o modo pressão controlada. Os ventiladores foram testados na modalidade espontânea ventilação com pressão suporte sendo ajustados dois valores de PEEP (5 e 10cmH2O) e 3 valores de pressão suporte (5, 10 e 15 cmH2O). Foi testado se os ventiladores funcionavam com a máscara TF e seu desempenho em relação à compensação de vazamento, pressurização, pico de fluxo atingido, atrasos inspiratório e expiratório. RESULTADOS: O ventilador Vision funcionou em todas as situações. Quatro ventiladores convencionais funcionaram (Horus, Vela, E500 e Servo i). O principal problema com os ventiladores que não funcionaram foi o autodisparo e o desligamento do fluxo inspiratório. O pico de vazamento medido foi maior que 1L/s, em média, e o pico de fluxo gerado, muitas vezes, atingia a capacidade máxima em alguns ventiladores. A capacidade de compensar vazamento foi variável entre os ventiladores, mas aqueles com maior dificuldade (E500 e Horus) foram os que mantiveram os menores valores de PEEP e, também, maiores atrasos no disparo, os demais ventiladores, apresentaram atrasos iniciais menores que 100ms. A ciclagem ocorreu por critérios de segurança nos ventiladores Horus, Vela e E500 em algumas medidas. A capacidade de pressurização foi avaliada pelo cálculo do PTP com 500ms e com 1 segundo. A área de pressurização com 1 segundo ficou abaixo de 50% da área esperada para todos os ventiladores, inclusive para o Vision, específico para VNIPP, sendo que o pior desempenho foi do ventilador Horus. CONCLUSÕES: Entre nove ventiladores convencionais testados, apenas quatro funcionaram com a TF. O desempenho entre os ventiladores foi variável, sendo que, alguns deles não se mostraram adequado para uso com VNIPP usando a máscara TF. A maior dificuldade para o funcionamento dos ventiladores convencionais foi lidar com o grande vazamento, com ocorrência de autodisparos ou desligamento do fluxo de ar do ventilador, acusando desconexão. O vazamento de ar pelos orifícios da máscara é elevado. Os ventiladores Horus e E500 tiveram atrasos maiores que 100ms no disparo; e a ciclagem ocorreu por critérios de segurança em todos ventiladores convencionais, em algumas medidas, exceto o Servo i / BACKGROUND: The success of therapy with noninvasive ventilation with positive pressure (VNIPP) is associated with interface choice. The Total face® mask (TFM) is an interface considered more comfortable than other, but it has a large dead space (875 ml) and constant high leakage. However, intensive care ventilators have been usually used for noninvasive ventilation in the ICU environment, their ability to operate with high air leakage is not known. OBJECTIVES: To evaluate the performance of nine ICU ventilators using TFM and compare them with a VNIPP mode only ventilator (Respironics BiPAP Vision). METHODS: a mechanical respiratory system simulator with two compartments was adapted to TFM what was connected to tested ventilators. The inspiratory effort was simulated using pressure control mode in Newport E500 ventilator. The ventilators were tested in spontaneous mode being adjusted at two values of PEEP (5 and 10cmH2O) and 3 values of pressure support (5, 10 and 15 cmH2O). It was tested if ventilators worked properly with TFM and its performance to compensation for leakage, its pressurization, the capability to reach peak flow target, and trigger and cycling delays. RESULTS: The Vision ventilator worked properly in all situations. Four conventional ventilators (Horus, Vela, E500 and Servo) worked. The main problem with failed ventilator was auto triggering and inspiratory flow turning off. Among worked ventilators, peak inspiratory leakage average was greater than 1L / s , generated peak flow reached maximum capacity in some settings with NIV mode only ventilator. The ability to compensate for leak was variable between ventilators, but those with greater difficulty (E500 and Horus) maintained the lowest values of PEEP and also had great trigger delays, the other ventilators showed trigger delays smaller than 100ms. The cycling occurred by security criteria on Horus, Vela and E500 ventilators in some settings. The ability of pressurization was evaluated by calculating the PTP with 500ms and 1 second. The area of pressurization with 1 second remained below 50% of target area for all ventilators, including for Vision, specifically for VNIPP. Horus ventilator has the worst pressurization performance. CONCLUSIONS: Among nine conventional tested ventilators, only four worked with the TFM. The performance among the ventilators was variable; as a result some of them were not suitable for use with NIV using TFM. The greatest difficulty for conventional ventilator operation was dealing with the large leakage, occurring auto triggering or inspiratory flow turning off, alarming disconnection. The air leakage through the mask holes (exhalation port) was high. Horus and E500 ventilators had trigger delays greater than 100ms and cycling occurred by security criteria for all conventional ventilators, except the Servo, in some setting
44

Impacto da inversão de sentido dos ventiladores de exaustão de um rack de equipamentos eletrônicos.

Rodrigo Ajuz Braga de Vasconcelos 01 June 2004 (has links)
O controle de temperatura de equipamentos eletrônicos tem sido objeto de vários trabalhos, e graças ao desenvolvimento tecnológico algumas ferramentas surgiram, possibilitando detalhados estudos em diversas áreas da engenharia. CFD (Computational Fluid Dynamics) é uma ferramenta de grande importância e cada vez mais utilizada quando se deseja estudar a dinâmica dos fluidos e a transferência de calor. O presente trabalho mostra o uso da ferramenta CFD para o estudo do resfriamento do compartimento de uma aeronave, composto de 11 equipamentos eletrônicos que dissipam calor com diferentes potências e 3 exaustores. São apresentadas também as simulações que foram feitas de modo a estudar o impacto da inversão dos sentidos dos exaustores, localizados na parede lateral do compartimento, que passaram a funcionar como ventiladores. Os resultados obtidos para os campos de escoamento de ar e temperatura mostraram quais configurações fornecem menores valores de temperatura média no "rack" de componentes eletrônicos e não comprometem a temperatura operacional desses equipamentos. Esses resultados também forneceram subsídios para verificar a ocorrência de correntes de ar "parasitas", refluxo no escoamento de ar e posicionamento mais adequado para uma melhor distribuição do ar no interior do "rack". Deste modo, a ferramenta se mostrou adequada para o que foi proposto no estudo.
45

Desempenho dos ventiladores convencionais em ventilação não invasiva: impacto da máscara total face® em modelo mecânico / The performance of intensive care (ICU) ventilators during noninvasive ventilation (NIV) using the total face mask® (TFM). A bench model study

Maria Aparecida Miyuki Nakamura 05 September 2008 (has links)
INTRODUÇÃO: O sucesso da terapia com ventilação não invasiva com pressão positiva (VNIPP) está associada com a escolha adequada da interface. A máscara Total face® (TF) é considerada mais confortável, porém possui grande espaço morto (875 ml) e vazamento constante elevado. Os ventiladores próprios para ventilação mecânica invasiva (convencionais) têm sido utilizados, habitualmente, para ventilação não invasiva em ambiente de UTI. OBJETIVOS: Avaliar o desempenho de nove ventiladores convencionais com uso da máscara TF e compará-los com um ventilador próprio para VNIPP (Respironics BiPAP Vision). MÉTODOS: Utilizou-se um modelo com dois simuladores mecânicos do sistema respiratório conectados a uma cabeça de manequim onde foi adaptada a máscara TF que foi conectada aos ventiladores testados. O esforço inspiratório foi simulado utilizando-se o modo pressão controlada. Os ventiladores foram testados na modalidade espontânea ventilação com pressão suporte sendo ajustados dois valores de PEEP (5 e 10cmH2O) e 3 valores de pressão suporte (5, 10 e 15 cmH2O). Foi testado se os ventiladores funcionavam com a máscara TF e seu desempenho em relação à compensação de vazamento, pressurização, pico de fluxo atingido, atrasos inspiratório e expiratório. RESULTADOS: O ventilador Vision funcionou em todas as situações. Quatro ventiladores convencionais funcionaram (Horus, Vela, E500 e Servo i). O principal problema com os ventiladores que não funcionaram foi o autodisparo e o desligamento do fluxo inspiratório. O pico de vazamento medido foi maior que 1L/s, em média, e o pico de fluxo gerado, muitas vezes, atingia a capacidade máxima em alguns ventiladores. A capacidade de compensar vazamento foi variável entre os ventiladores, mas aqueles com maior dificuldade (E500 e Horus) foram os que mantiveram os menores valores de PEEP e, também, maiores atrasos no disparo, os demais ventiladores, apresentaram atrasos iniciais menores que 100ms. A ciclagem ocorreu por critérios de segurança nos ventiladores Horus, Vela e E500 em algumas medidas. A capacidade de pressurização foi avaliada pelo cálculo do PTP com 500ms e com 1 segundo. A área de pressurização com 1 segundo ficou abaixo de 50% da área esperada para todos os ventiladores, inclusive para o Vision, específico para VNIPP, sendo que o pior desempenho foi do ventilador Horus. CONCLUSÕES: Entre nove ventiladores convencionais testados, apenas quatro funcionaram com a TF. O desempenho entre os ventiladores foi variável, sendo que, alguns deles não se mostraram adequado para uso com VNIPP usando a máscara TF. A maior dificuldade para o funcionamento dos ventiladores convencionais foi lidar com o grande vazamento, com ocorrência de autodisparos ou desligamento do fluxo de ar do ventilador, acusando desconexão. O vazamento de ar pelos orifícios da máscara é elevado. Os ventiladores Horus e E500 tiveram atrasos maiores que 100ms no disparo; e a ciclagem ocorreu por critérios de segurança em todos ventiladores convencionais, em algumas medidas, exceto o Servo i / BACKGROUND: The success of therapy with noninvasive ventilation with positive pressure (VNIPP) is associated with interface choice. The Total face® mask (TFM) is an interface considered more comfortable than other, but it has a large dead space (875 ml) and constant high leakage. However, intensive care ventilators have been usually used for noninvasive ventilation in the ICU environment, their ability to operate with high air leakage is not known. OBJECTIVES: To evaluate the performance of nine ICU ventilators using TFM and compare them with a VNIPP mode only ventilator (Respironics BiPAP Vision). METHODS: a mechanical respiratory system simulator with two compartments was adapted to TFM what was connected to tested ventilators. The inspiratory effort was simulated using pressure control mode in Newport E500 ventilator. The ventilators were tested in spontaneous mode being adjusted at two values of PEEP (5 and 10cmH2O) and 3 values of pressure support (5, 10 and 15 cmH2O). It was tested if ventilators worked properly with TFM and its performance to compensation for leakage, its pressurization, the capability to reach peak flow target, and trigger and cycling delays. RESULTS: The Vision ventilator worked properly in all situations. Four conventional ventilators (Horus, Vela, E500 and Servo) worked. The main problem with failed ventilator was auto triggering and inspiratory flow turning off. Among worked ventilators, peak inspiratory leakage average was greater than 1L / s , generated peak flow reached maximum capacity in some settings with NIV mode only ventilator. The ability to compensate for leak was variable between ventilators, but those with greater difficulty (E500 and Horus) maintained the lowest values of PEEP and also had great trigger delays, the other ventilators showed trigger delays smaller than 100ms. The cycling occurred by security criteria on Horus, Vela and E500 ventilators in some settings. The ability of pressurization was evaluated by calculating the PTP with 500ms and 1 second. The area of pressurization with 1 second remained below 50% of target area for all ventilators, including for Vision, specifically for VNIPP. Horus ventilator has the worst pressurization performance. CONCLUSIONS: Among nine conventional tested ventilators, only four worked with the TFM. The performance among the ventilators was variable; as a result some of them were not suitable for use with NIV using TFM. The greatest difficulty for conventional ventilator operation was dealing with the large leakage, occurring auto triggering or inspiratory flow turning off, alarming disconnection. The air leakage through the mask holes (exhalation port) was high. Horus and E500 ventilators had trigger delays greater than 100ms and cycling occurred by security criteria for all conventional ventilators, except the Servo, in some setting
46

Metodología para pruebas técnicas de validación del modo presión soporte en ventiladores mecánicos MASI

Fernandez Valiente, Cesar Antonio 13 February 2024 (has links)
El siguiente trabajo de investigación presenta una metodología para la validación del modo presión soporte del ventilador mecánico MASI, ventilador de emergencia elaborado por la PUCP durante la pandemia de COVID-19, con el fin cubrir la escasez de ventiladores pulmonares. El trabajo soluciona la necesidad de una validación repetible y reproducible para los modos ventilatorios asistidos necesarios para la ventilación no invasiva (VNI), la cual es importante como primera línea de atención a los pacientes o para la recuperación post UCI en el momento del destete. Para ello se desarrolló un procedimiento de pruebas con el objetivo de validar el funcionamiento de MASI en nueve configuraciones ventilatorias donde se varían el trigger y la presión soporte, validando el volumen tidal mediante una tabla patrón del modo presión control del mismo ventilador. Para ello se elaboró un circuito que contiene una jeringa y un simulador pulmonar pasivo entre otros componentes, los cuales permitieron generar el impulso inspiratorio necesario para simular una respiración espontánea de un paciente. Luego de ello se realizó un análisis para determinar la validez tanto de la metodología utilizada como del ventilador MASI, mediante un estudio de repetibilidad y reproducibilidad. Finalmente, en base a todo lo desarrollado se realizaron propuestas de mejora a la metodología utilizada, así como recomendaciones de uso del ventilador en el modo presión soporte en su estado actual de acuerdo a los resultados obtenidos.
47

Estudio comparativo entre el ventilador mecánico peruano de emergencia masi y el ventilador estadounidense Spiro Wave

Quispe Pintado, Hugo Javier 26 January 2024 (has links)
Actualmente, no existe un equipo biomédico fabricado en el Perú que haya obtenido registro sanitario (RS). Durante la pandemia de la COVID-19 se viabilizó el permiso excepcional para uso clínico de innovaciones peruanas en pro de cubrir el déficit de equipamiento durante la emergencia sanitaria. Una de estas innovaciones, fue el ventilador Masi, un producto fabricado en la PUCP con apoyo de empresas privadas y que llegó a ser usado clínicamente, demostrando un gran nivel de la capacidad de producción del Perú en esta industria y acortando la brecha existente entre la tecnología de equipos biomédicos importados. El presente trabajo de tesis tiene como objetivo principal describir el nivel de desarrollo del ventilador peruano Masi mediante el estudio comparativo de sus características técnicas y de desempeño con las del ventilador estadounidense Spiro Wave, el cual también fue desarrollado en base a una innovación académica del Instituto Tecnológico de Massachusetts (MIT). La metodología del trabajo se divide en tres etapas: diseño de protocolo de calibración, análisis estadístico y evaluación. El protocolo de calibración diseñado es basado en estándares de calibración mecánicos e indica todas las consideraciones tomadas en cuenta para la ejecución de las pruebas y reporte de resultados. Luego de implementado el protocolo de calibración, se analiza estadísticamente los resultados obtenidos utilizando el análisis de varianza y cálculo de incertidumbres para validar las pruebas realizadas. La evaluación de los resultados del estudio se basa en utilizar las calibraciones para comparar el desempeño de ambos ventiladores bajo el estándar de validación más alto de este tipo de equipos, la ISO 80601:2-2020 “Equipo médico eléctrico. Parte 2-12: Requisitos particulares para la seguridad básica y funcionamiento esencial de los respiradores para cuidados intensivos” y la norma peruana EDP:103-2020 “EQUIPO MÉDICO ELÉCTRICO. Ventiladores. Especificaciones de diseño y fabricación para su uso en cuidados críticos pediátrico-adultos durante la emergencia sanitaria. 1a Edición” como referencia para los límites de exactitud permitidos. Además, se realiza una descripción de resultados para los parámetros de interés: Volumen Tidal, Relación entre el Tiempo Inspiratorio y Espiratorio, Frecuencia Respiratoria, Presión Positiva al Final de la Espiración y Presión Inspiratoria Pico. Los resultados permiten concluir que el ventilador peruano Masi se desempeñó mejor que el ventilador estadounidense Spiro Wave en las pruebas de calibración realizadas considerando los rangos establecidos estadísticamente para el análisis realizado de los parámetros ventilatorios de interés. Esto permite afianzar el nivel de la tecnología peruana en equipos médicos y sentar precedentes científicos para la obtención del registro sanitario del ventilador Masi.
48

Diseño de un ventilador mecánico de presión negativa tipo coraza para el tratamiento de las enfermedades pulmonares obstructivas crónicas en personas adultas

Venturo Ascasibar, Marcos Alexander 04 April 2024 (has links)
La presente investigación se centró en el desarrollo de un ventilador mecánico de presión negativa no invasivo tipo coraza, para el tratamiento de la enfermedad pulmonar obstructiva crónica (EPOC) en adultos. Este dispositivo se diseñó mediante simulaciones basadas en modelos matemáticos y la selección de componentes electrónicos y mecánicos. Su funcionamiento se basa en suministrar una fuerza de succión al tórax a través de una coraza conectada a este. El actuador, como un motor o compresor, proporciona esta fuerza para expandir y contraer el tórax y el diafragma durante el ciclo respiratorio. La necesidad de diseñar este tipo de ventilador mecánico surge debido a las carencias en el equipamiento de las instalaciones de atención médica y los altos costos de los tratamientos para enfermedades respiratorias, que se hicieron evidentes durante la pandemia de COVID-19. Este modelo es capaz de generar una presión entre los 20 y – 20 cmH2O, con una frecuencia respiratoria entre los 25 y 35 rpm para su uso en pacientes con EPOC que requieran de una terapia no invasiva con una coraza. Se empleo la metodología VDI 2206, la cual indica las pautas para el desarrollo de proyectos mecatrónicos. Se hizo un análisis de las problemáticas para requerir un ventilador a presión negativa y las tecnologías existentes actualmente. Además, se explica los fundamentos de la mecánica respiratoria y la tecnología de los ventiladores mecánicos. En base a lo anterior, y junto a la lista de requerimientos se determinó que la alternativa más viable era usar un motor junto a un impeller, controlado por un microcontrolador y que se pueda interactuar con una pantalla táctil. Posteriormente, se realiza el diseño electrónico con la selección de componentes; el diseño mecánico con la elaboración del impeller y de control para obtener un modelo matemático de todo el sistema. Finalmente, se procede realizar la simulación mediante software del modelamiento matemático, el diseño en 3D del sistema mecatrónico y el control PID de la presión generada, para luego evaluar la viabilidad económica de la fabricación y el costo de los componentes seleccionados.
49

Metodologia para a análise estrutural estática e dinâmica de ventiladores centrífugos: emprego de métodos analíticos e numéricos. / Methodology for static and dynamic structural analysis of centrifugal fans: employment of analytical and numerical methods.

Ortigosa, André Schiavon Perez 09 August 2012 (has links)
A análise de tensões em impelidores de ventiladores centrífugos pelo método dos elementos finitos revela que seus componentes são altamente solicitados e sujeitos a campos de tensões complexos. Tradicionalmente, o projeto estrutural de impelidores centrífugos é realizado a partir do cálculo das tensões estáticas provenientes da força centrífuga, e o comportamento dinâmico do impelidor é frequentemente verificado através de estudos de vibrações livres frente ao conhecimento das fontes de excitação. Por tal abordagem não é realizada qualquer avaliação quanto aos níveis de tensões dinâmicas nos componentes do impelidor. Neste trabalho, contudo, a determinação das tensões dinâmicas é apresentada como uma importante ferramenta para avaliar a integridade estrutural de um impelidor centrífugo durante a sua operação. Para tanto, cálculos de resposta são realizados no rotor e, isoladamente, no impelidor de um ventilador centrífugo, conduzindo a uma nova metodologia para a análise estrutural destes equipamentos através do método dos elementos finitos. / Stress analysis of centrifugal fan impellers through the finite element method reveals that its components are highly stressed and subjected to complex stress fields. Traditionally, the mechanical design of centrifugal impellers is performed from the study of the static stress levels due to the centrifugal force. The impeller dynamic behavior is evaluated through free vibration analysis and also with the knowledge of the main excitation sources. This approach does not consider any assessment on the dynamic response of the impeller components. In this work, however, the dynamic stress determination is presented as an important tool in order to evaluate the structural integrity of centrifugal fan impellers during its operation. For this purpose, frequency response analysis is performed on the rotor and, separately, on the centrifugal fan impeller, leading to a new methodology for structural analysis of these equipment through the finite element method.
50

Diagnóstico de avaria em bombas e ventiladores por análise de vibrações e equilibragem em estaleiro pelo método dos coeficientes de influência : trabalho realizado na EFAFLU, bombas e ventiladores S.A.

Guimarães, Luís Miguel da Silva January 2011 (has links)
Tese de mestrado integrado. Engenharia Mecânica. Faculdade de Engenharia. Universidade do Porto. 2011

Page generated in 0.1074 seconds