• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Valence-specific Enhancements in Visual Processing Regions Support Negative Memories:

Kark, Sarah Marie January 2019 (has links)
Thesis advisor: Elizabeth A. Kensinger / Research in four parts examines the effects of valence on the neural processes that support emotional memory formation and retrieval. Results show a consistent valence-specific enhancement of visuocortical engagement along the ventral visual stream and occipital cortex that supports negative memories to a greater extent than positive memories. Part I investigated the effects of valence on the interactions between trial-level physiological responses to emotional stimuli (i.e., heart rate deceleration) during encoding and subsequent memory vividness. Results showed that negative memory vividness, but not positive or neutral memory vividness, is tied to arousal-related enhancements of amygdala coupling with early visual cortex during encoding. These results suggest that co-occurring parasympathetic arousal responses and amygdala connectivity with early visual cortex during encoding influence subsequent memory vividness for negative stimuli, perhaps reflecting enhanced memory-relevant perceptual enhancements during encoding of negative stimuli. Part II examined links between individual differences in post-encoding increases is amygdala functional connectivity at rest and the degree and direction of emotional memory biases at retrieval. Results demonstrated that post-encoding increases in amygdala resting state functional connectivity with visuocortical and frontal regions predicted the degree of negative memory bias (i.e., better memory for unpleasant compared to pleasant stimuli) and positive memory bias, respectively. Further, the effect of amygdala-visuocortical post-encoding coupling on behavioral negative memory bias was completely mediated by greater retrieval-related activity for negative stimuli in visuocortical areas. These findings suggest that those individuals with a negative memory bias tend to engage visual processing regions across multiple phases of memory more than individuals with a positive memory bias. While Parts I-II examined encoding-related memory processes, Part III examined the effects of valence on true and false subjective memory vividness at the time of retrieval. The findings showed valence-specific enhancements in regions of the ventral visual stream (e.g., inferior temporal gyrus and parahippocampal cortex) support negative memory vividness to a greater extent than positive memory vividness. However, activation of the parahippocampal cortex also drove a false sense of negative memory vividness. Together, these findings suggest spatial overlap in regions that support negative true and false memory vividness. Lastly, Part IV utilized inhibitory repetitive transcranial magnetic stimulation (rTMS) to test if a portion of occipito-temporal cortex that showed consistent valence-specific effects of negative memory in Parts I-III was necessary for negative memory retrieval. Although some participants showed the hypothesized effect, there was no group-level evidence of a neuromodulatory effect of occipito-temporal cortex rTMS on negative memory retrieval. Together, the results of the current dissertation work highlight the importance of valence-based models of emotional memory and consistently implicated enhanced visuosensory engagement across multiple phases of memory. By identifying valence-specific effects of trial-level physiological arousal during encoding, post-encoding amygdala coupling during early consolidation, and similarities and differences between true and false negative memories, the present set of work has important implications for how negative and positive memories are created and remembered differently. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Psychology.
2

SPATIAL MEMORY AND NAVIGATION IN HUMANS

Han, Xue 10 1900 (has links)
<p>We investigated 1) how objects come to serve as landmarks in spatial memory and more specifically how they form part of an allocentric cognitive map and 2) how humans encode multiple connected spatial environments. In both sets of experiments, participants performing a virtual driving task incidentally learned the layout of a town and locations of objects or stores in that town. Their spatial memory and recognition memory for the objects or stores were subsequently tested. To assess whether the objects were encoded allocentrically, we developed a new measurement, pointing consistency. We found that when participants had more limited experience of the environment spatial memory for objects at navigationally relevant locations was more consistent across tested viewpoints than for objects at navigationally less relevant locations. When participants’ attention was focused on the appearance of objects, the navigational relevance effect was eliminated, whereas when their attention was focused on the objects’ locations, this effect was enhanced, supporting the hypothesis that when objects are processed in the service of navigation, rather than merely being viewed as objects, they engage qualitatively distinct attentional systems and are incorporated into an allocentric spatial representation. The results were consistent with evidence from the neuroimaging literature that when objects are relevant to navigation, they not only engage the ventral “object processing stream”, but also the dorsal stream and medial temporal lobe memory system classically associated with allocentric spatial memory. Moreover, in the connected environments, our data were more consistent with the formation of local maps, regardless of whether the neighborhoods were learned together or separately. Only when all visible distinctions between neighborhoods were removed did people behave as if they formed one integrated map. These data are broadly consistent with evidence from rodent hippocampal place cell recordings in connected boxes, and with hierarchical models of spatial coding.</p> / Doctor of Philosophy (PhD)

Page generated in 0.0747 seconds